
1 Körper

Sie kennen bereits 2 Beispiele von Zahlkörpern:

(Q,+, ·) die rationalen Zahlen mit ihrer Addition und Multiplikation
(R,+, ·) die reellen Zahlen mit ihrer Addition und Multiplikation

Vielleicht kennen Sie auch schon

(C,+, ·) die komplexen Zahlen

Wir definieren nun, was wir unter einem „Körper“ verstehen, und sehen dann, dass es noch andere,
ganz kleine Körper gibt:

Definition 1.1. Ein Körper ist eine Menge k , auf der 2 Operationen + und · definiert sind, für
welche die folgenden Gesetze gelten:

i) [ ∀ a, b, c ∈ k ] [ (a + b) + c = a + (b + c) ] Assoziativitätsgesetz

ii) [ ∃ 0 ∈ k ] [ ∀ a ∈ k ] [ a + 0 = a ] Existenz eines Neutralelements

iii) [ ∀ a ∈ k ] [ ∃ b ∈ k ] [ a + b = 0 ] Existenz eines Inversen (−a)

iv) [ ∀ a, b ∈ k ] [ a + b = b + a ] Kommutivitätsgesetz

v) [ ∀ a, b, c ∈ k ] [ (a · b) · c = a · (b · c) ] Assoziativitätsgesetz

vi) [ ∃ 1 ∈ k ] [ ∀ a ∈ k ] [ a · 1 = a ] Existenz eines Neutralelements

vii) [ ∀ a ∈ k ] [ (a ̸= 0) =⇒ [( ∃ b ∈ k )(a · b = 1)] ] Existenz eines Inversen

viii) [ ∀ a, b ∈ k ] [ a · b = b · a ] Kommutivitätsgesetz

ix) [ ∀ a, b, c ∈ k ] [ a · (b + c) = (a · b) + (a · c) ] Distributivgesetz

x) 1 ̸= 0 Ausschluss des trivialen Beispiels

Bemerkungen:

• für das additive Inverse von a schreibt man (−a) oder −a

• für a + (−b) schreibt man meist a − b

• für das multiplikative Inverse von a schreibt man 1a oder a−1

• für a · 1b schreibt man manchmal auch a : b oder ab
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Es gelten die folgenden Gesetzmässigkeiten:

Lemma 1.2

i) [ ∀ a ∈ k ] [ 0 · a = 0 ]

ii) [ ∀ a ∈ k ] [ (−1) · a = (−a) ]

iii) [ ∀ a, b ∈ k ] [ a · b = 0 =⇒ (a = 0 ∨ b = 0) ]

Beweis

i) Es ist 0 · a + 1 · a = (0 + 1) · a = 1 · a = a
0 · a + a = a

(0 · a + a) + (−a) = a + (−a)
0 · a + (a +−a) = a +−a = 0

0 · a + 0 = 0
0 · a = 0

ii) 0 · a = 0
(−1 + 1) · a = 0

(−1) · a + 1 · a = 0
(−1 · a + a) + (−a) = 0 + (−a)
−1 · a + (a + (−a)) = (−a)

−1 · a + 0 = −a
−1 · a = −a

iii) Wäre a ̸= 0, so würde a−1 existieren, und

a · b = 0 =⇒ a−1 · (a · b) = (a−1) · 0 =⇒
(a−1 · a) · b = 0 =⇒ 1 · b = 0 =⇒ b = 0

Aus a ̸= 0 folgt also b = 0.

Genauso folgt aus b ̸= 0 sofort, dass a = 0.
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Wir dürfen also mit Vorzeichen, 0 und −1 genauso rechnen, wie wir es gewohnt sind. Auch die
Klammern setzen wir (oder lassen sie weg), wie wir es von der Regel „Punkt vor Strich“ kennen.
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Der Vollständigkeit halber beweisen wir auch noch die Eindeutigkeit der additiven und multiplikativen
Inversen:

Lemma 1.3

Sei (k,+, ·) ein Körper. Dann gilt

i) [ ∀ a, b, c ∈ k ] [ (a + b = 0 ∧ a + c = 0) =⇒ b = c ]

ii) [ ∀ a, b, c ∈ k ] [ (a · b = 1 ∧ a · c = 1) =⇒ b = c ]

Beweis

i) Sei also a + b = 0 und a + c = 0. Dann ist

(a + b)− (a + c) = 0− 0 = 0
a + b + (−a) + (−c) = 0
a + (−a) + b + (−c) = 0

b + (−c) = 0
b + (−c) + c = 0 + c

b = c

ii) Sei noch a · b = 1 und a · c = 1. Dann gilt

a · b − a · c = 1− 1 = 0
a · (b − c) = 0; aus a ̸= 0 folgt mit Lemma 1.2 iii):

b − c = 0, also wieder b = c
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In einem Zahlkörper (= Körper) kann man somit lineare Gleichungen genau so lösen, wie Sie es sich
gewohnt sind:

Sei a + b · x = c gegeben mit b ̸= 0

a + b · x − a = c − a
a − a + b · x = c − a

∣∣ · b−1
0 + b−1 · b · x = b−1 · (c − a)

1 · x = x =
c − a
b

Die Lösung ist nach Lemma 1.3 eindeutig bestimmt.

Die Forderungen i) bis ix) der Definition 1.1 sind also eine Analyse dessen, was mindestens gelten
muss, damit man „rechnen kann wie in Q oder R“. Es sind die Axiome eines Körpers.

Warum bildet (Z,+, ·) keinen Körper ?
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Definition 1.4. Zu jedem n ∈ N mit n ≥ 2 sind die Restklassen bei der Division durch n als
Teilmengen von Z definiert.

Beispiel. Für n = 6 gibt es 6 mögliche Reste bei der Division durch 6, nämlich 0, 1, 2, 3, 4 und 5.
Z zerfällt in die folgenden Restklassen modulo 6:

0 = {. . . , -12, -6, 0, 6, 12, 18, . . .}

1 = {. . . , -11, -5, 1, 7, 13, 19, . . .}

2 = {. . . , -10, -4, 2, 8, 14, 20, . . .}

3 = {. . . , -9, -3, 3, 9, 15, 21, . . .}

4 = {. . . , -8, -2, 4, 10, 16, 22, . . .}

5 = {. . . , -7, -1, 5, 11, 17, 23, . . .}

Sprechweisen: „modulo 6 gilt 1 = 7“ oder „es ist −2 = 10 modulo 6“.

Oft lässt man die Striche einfach weg, wenn klar ist, dass man von den Restklassen spricht.

Bezeichnung: Zn bezeichnet die Menge der Restklassen in Z bei der Division durch n.

Zn enthält n Elemente.

Z6 = { 0, 1, 2, 3, 4, 5 } =
! { 0, 1, 2, 3, 4, 5 }

Satz 1.5. Durch die folgenden Festlegungen sind 2 Operationen + und · auf Zn definiert:

i) a + b := a + b

ii) a · b := a · b

Beweis: Wir müssen zeigen, dass das Ergebnis der Definition nicht von der speziellen Wahl der
Repräsentanten a und b für die Restklassen a und b abhängt.

Zuerst ein Beispiel in Z6:

Es ist 2 = 8 und 5 = 17 modulo 6.

2 + 5 = 2 + 5 = 7 = 1, aber auch

8 + 17 = 25 = 1

Andere Repräsentanten derselben Restklassen liefern also dieselbe Summe.
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In Zn sind alle Repräsentanten von a von der Form a + z · n.

i) Es ist a+b = a + b. Für zwei beliebige Repräsentanten derselben Restklassen gilt aber auch

a + z · n + b + y · n = a + z · n + b + y · n =
a + b + (z + y) · n = a + b

ii) Genau so: a · b = a · b, aber auch

a + z · n · b + y · n = (a + z · n) · (b + y · n) =
a · b + a · y · n + b · z · n + y · z · n · n = a · b
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Summe und Produkt sind also eindeutig definiert, unabhängig von der speziellen Wahl der Reprä-
sentanten für a und b!

Zwei Beispiele: Wir stellen die Additions- und Multiplikationstafeln für Z4 und Z5 auf.

Z4 + 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Z4 · 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Z5 + 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Z5 · 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Satz 1.6. (Zn,+, ·) genügt allen Körperaxiomen ausser vii), welches die Existenz eines multiplika-
tiven Inversen verlangt für alle Elemente ausser 0.

Beweis: Die Multiplikationstabelle von Z4 zeigt, dass Axiom vii) nicht erfüllt sein muss. Dort haben
nur die Elemente 1 und 3 ein multiplikatives Inverses.

Wir gehen die übrigen Axiome Punkt für Punkt durch und erkennen, dass Zn das entsprechende
Rechengesetz von Z erbt!

2
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Auch Z ist ja kein Körper, weil dort nur 1 und −1 ein Inverses haben. Für alle andern Zahlen n ̸= 0
hat n · k = 1 keine Lösung in Z.

Aber alle andern Eigenschaften besitzt Z und gibt sie über die Definition von (Zn,+, ·) auch an Zn
weiter. Wir werden solche „Fast-Körper“ später einen „kommutativen Ring“ nennen.

Wenn wir die Multiplikationstafel von Z5 betrachten, stellen wir fest, dass auch vii) erfüllt ist.

Z5 ist also ein Körper!

Damit stellt sich die Frage: Für welche n ∈ N mit n ≥ 2 ist Zn ein Körper?

Satz 1.7. Für die Restklassen Zn mit + und · sind die folgenden drei Aussagen äquivalent:

i) n ist prim

ii) Zn ist ein Zahlkörper

iii) Zn hat keine „Nullteiler“

Beweis: Wir zeigen i) =⇒ ii) =⇒ iii) =⇒ i) !

i) =⇒ ii) Sei n also prim. Wir müssen zeigen, dass dann jedes a ∈ Zn mit a ̸= 0 ein multiplikati-
ves Inverses besitzt.

Wir zeigen zuerst: Die n Restklassen 0 = a · 0, a · 1, a · 2, . . . , a · (n − 1) sind alle
verschieden.

Sonst gäbe es i und j mit 0 ≤ i < j < n und a · i = a · j , also a · (j − i) = 0 = n. Es
müsste also ein k ∈ Z existieren mit

a · (j − i) = k · n

Die Primzahl n ist ein Teiler der Zahl k · n, sie muss daher auch ein Teiler von a oder
von (j − i) sein! Dies ist aber beides nicht möglich, da sowohl a < n und j − i < n.

Alle n Restklassen a · i sind somit verschieden. Dann muss eine davon 1 sein. Sei also
a · h = 1. Dann gilt aber a · h = a · h = 1, und h ist das gesuchte multiplikative Inverse
von a.

ii) =⇒ iii) Lemma 1.2 iii)

iii) =⇒ i) Wir zeigen ¬ i) =⇒ ¬ iii) !

Ist n keine Primzahl, so existieren a, b ∈ Z mit a · b = n. Dann gilt aber
a · b = a · b = n = 0, Zn enthält also Nullteiler.
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Ist p eine Primzahl (und nur dann!), dann ist Zp ein Körper mit allem drum und dran.

Z2, Z3, Z5, Z7, Z11 usw. sind also Körper.

Damit haben wir schon einen schönen (aber noch unvollständigen!) Katalog von Körpern:

Q, R, C, Zp (p prim)
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Jede lineare Gleichung hat in jedem dieser Körper eine eindeutige Lösung, wenn der Koeffizient bei
der Variablen x nicht 0 ist:

Ein Beispiel in Z7:
2 + 3 · x = 4

∣∣+ 5
3 · x = 2

∣∣ · 5 (3−1 = 5)

15 · x = 10 also
1 · x = 3 somit x = 3

(alle Rechnungen modulo 7)

Test: 2 + 3 · 3 = 2 + 9 = 11 = 4

Einige kleine Aufgaben:

1. Betrachten Sie 2 + 3 · x = 4 als Gleichung in Z5 und bestimmen Sie die Lösung!

2. In Z23: Finden Sie einfache Repräsentanten für −17 und 1
17 .

3. Wie findet man allgemein die additive Gegenzahl zu a in Zn?

4. Bestimmen Sie 18−1 und 19−1 in Z47. (47 ist prim)

5. Bestimmen Sie 18−1 und 19−1 in Z241. (241 ist prim)

6. Berechnen Sie von Hand das Produkt von 51 und 67 und prüfen Sie Ihre Rechnung mit der
Siebenerprobe.

7. Sei p eine Primzahl. Wie kann man allgemein a−1 bestimmen in Zp? (schwierig!)

8. Wie viele Primzahlen gibt es überhaupt?

Welches ist die grösste?

Was bedeutet das für die Probleme 4. – 6. ?!

9. Sie kennen alle die Darstellung von Z als unendliche Punktreihe auf der Zahlengeraden.
Wie könnte man sich entsprechend Z5 oder Z6 vorstellen?
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Neunerprobe und Rechnen modulo 9

Sie kennen alle die Neunerprobe beim Multiplizieren, Dividieren oder auch beim Addieren:

13 · 8 = 104

↓ ↓ ↓

4 · 8 = 5 4 · 8 = 32 =! 5 mod 9

Also kann das Resultat stimmen!

2. Beispiel:

76 · 84 = 6384

↓ ↓ ↓

13 12 21

↓ ↓ ↓

4 · 3 =
?

3 4 · 3 = 12 =! 3 mod 9

Man bildet die „einstellige Quersumme“ und prüft, ob für diese die Rechnung mod 9 stimmt!

Behauptung: Das Bilden der „einstelligen Quersumme“ bedeutet einfach, die Rechnung auf Z9 zu
übertragen, also 76 · 84 mod 9 zu prüfen.

Beweis

1. Die Stellen auf ihre Ziffern reduzieren:

300 mod 9 = 3 · 100 mod 9 = 3 · 1 mod 9 = 3

60 mod 9 = 6 · 10 mod 9 = 6 · 1 mod 9 = 6

7 mod 9 = 7

9, 99, 999, 9999 usw. sind alle = 0 mod 9 !!

2. Die Quersumme bilden:

(300 + 60 + 7) mod 9 = Satz 1.5 i) !!

(3 + 6 + 7) mod 9 = 16 mod 9 = 7
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Bemerkung: Stimmt die Rechnung a · b = c , dann muss sie auch „modulo 9“ stimmen: a · b = c ,
wobei sich a, b und c durch die „einstellige Quersumme“ bestimmen lassen.
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Aber: Stimmt die Neunerprobe, so muss die Rechnung noch lange nicht stimmen!

Beispiel:

13 · 8 = 122

↓ ↓ ↓

4 · 8 5

4 · 8 = 32 = 5 mod 9

Zum richtigen Resultat können beliebige Vielfache von 9 addiert oder subtrahiert werden.

Auch für sehr grosse Primzahlen p ist es sehr leicht, die additive Gegenzahl in Zp zu finden:
a + (p − a) = 0.

Anders ist es mit dem multiplikativen Inversen! Bei kleineren Primzahlen (sagen wir < 10 000) findet
der TR mit einer for-Schleife noch schnell die Zahl b mit a·b = 1modulo p. Dieses „Durchprobieren“
wird aber bald sehr langsam, wenn p gross wird. Zum Glück gibt es aber eine wesentlich schnellere
Methode. Diese ist der Inhalt des nächsten Abschnittes.
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