1 Korper

Sie kennen bereits 2 Beispiele von Zahlkorpern:

(Q +.) die rationalen Zahlen mit ihrer Addition und Multiplikation
(R, +,-) die reellen Zahlen mit ihrer Addition und Multiplikation

Vielleicht kennen Sie auch schon

(C,+.) die komplexen Zahlen

Wir definieren nun, was wir unter einem ,Korper” verstehen, und sehen dann, dass es noch andere,
ganz kleine Korper gibt:

Definition 1.1. Ein Korper ist eine Menge k, auf der 2 Operationen + und - definiert sind, fiir
welche die folgenden Gesetze gelten:

i) [Vabcek][(a+b)+c=a+(b+c)] Assoziativitatsgesetz
i) [30ek][Vaek][a+0=a] Existenz eines Neutralelements
i) [Vaek][3Ibek][a+b=0] Existenz eines Inversen (—a)
i iv) [Va,bek][a+b=b+a] Kommutivitatsgesetz
N v) [Va, b, cek][(a-b)-c=a-(b-0)] Assoziativitatsgesetz
vi) [3lek][Vack][a-1=a] Existenz eines Neutralelements
vii) [Vaek][(a#0)=[(Ibek)(a-b=1)]] Existenz eines Inversen
viii) [Va,be k][a-b=0b-a] Kommutivitatsgesetz
ix) [Va,b,cek][a-(b+c)=(a-b)+(a-0c)] Distributivgesetz
x) 1#0 Ausschluss des trivialen Beispiels
Bemerkungen:

e fiir das additive Inverse von a schreibt man (—a) oder —a

e fiir a+ (—b) schreibt man meist a — b

L=

e fiir das multiplikative Inverse von a schreibt man = oder a—

e fiir a- £ schreibt man manchmal auch a: b oder

oy



Es gelten die folgenden Gesetzmassigkeiten:
Lemma 1.2
i) [Vaek][0-a=0]

i) [Vaek][(-1)-a=(-a)]
i) [Vabek][a-b=0=> (a=0Vb=0)]

Beweis
i) Esist 0-a+l-a=(0+1)-a=1-a=a
0O-ata=a
(0-a+a)+(—a)=a+(—a)
0-a+(a+—-a)=a+-a=0
0-a+0=0
0-a=0
i) 0-a=0

(-1+1)-a=0
(-1)-a+1-a=0
(=1-a+a)+(-a)=0+(-a)
—1l-a+(a+(-a))=(-a)
—1-a+0=-a
—l-a=-a

i) Wire a # 0, so wiirde a—! existieren, und

a-b=0= at-(a-b)=(a!)-0 =
(a1 a)-b=0=1-b=0= b=0

Aus a # 0 folgt also b = 0.
Genauso folgt aus b # 0 sofort, dass a = 0.

O

Wir diirfen also mit Vorzeichen, 0 und —1 genauso rechnen, wie wir es gewohnt sind. Auch die

Klammern setzen wir (oder lassen sie weg), wie wir es von der Regel ,Punkt vor Strich” kennen.



Der Vollstandigkeit halber beweisen wir auch noch die Eindeutigkeit der additiven und multiplikativen
Inversen:

Lemma 1.3
Sei (k, 4+, -) ein Korper. Dann gilt

i) [Vabcek]l(a+b=0ANa+c=0) = b=c]

i) [Va,b,cek][(a-b=1ANa-c=1) = b=c]

Beweis

i) Seialso a+b=0und a+c=0.Dannist
(a+b)—(a+c)=0-0=0
at+b+(—a)+(—c)=0
a+(—a)+b+(—c)=0

b+(-c)=0
b+(—c)+c=0+c
b=c

i) Seinocha-b=1unda-c=1.Dann gilt
a-b—a-c=1-1=0
a-(b—c)=0; aus a# 0 folgt mit Lemma 1.2 iii):
b—c =0, also wieder b =c¢
O

In einem Zahlkorper (= Korper) kann man somit lineare Gleichungen genau so I6sen, wie Sie es sich
gewohnt sind:

Seia+ b-x=c gegeben mit b#0

at+b-x—a=c—a

a—a+b-x=c—a }-bfl
O+bt-b-x=b"1-(c—a)
1 x—x—c_a
7 b

Die Losung ist nach Lemma 1.3 eindeutig bestimmt.

Die Forderungen i) bis ix) der Definition 1.1 sind also eine Analyse dessen, was mindestens gelten
muss, damit man ,rechnen kann wie in Q oder R". Es sind die Axiome eines Korpers.

Warum bildet (Z, +, -) keinen Korper ?



Definition 1.4. Zu jedem n € N mit n > 2 sind die Restklassen bei der Division durch n als
Teilmengen von Z definiert.

Beispiel. Fiir n = 6 gibt es 6 mogliche Reste bei der Division durch 6, namlich 0, 1, 2, 3, 4 und 5.
Z zerfallt in die folgenden Restklassen modulo 6:

0=1{..,-12,-6, 0,6, 12, 18,...}
T={..,-11,-51,7,13,19,.. .}
2=1{...,-10,-4, 2 8, 14, 20,...}
3=4{...,-9,-3,3,9,15,21,...}
Z={...,-8-2,410 16,22, ...}
5={...,-7,-1,5 11,17, 23,.. .}

Sprechweisen: ,modulo 6 gilt 1 = 7" oder ,es ist —2 = 10 modulo 6".

Oft lasst man die Striche einfach weg, wenn klar ist, dass man von den Restklassen spricht.

Bezeichnung: Z, bezeichnet die Menge der Restklassen in Z bei der Division durch n.

Z, enthalt n Elemente.

Z6=1{0,1,2,3,45} ={0,1,2 3,4, 5}

Satz 1.5. Durch die folgenden Festlegungen sind 2 Operationen + und - auf Z,, definiert:

) a+b:=a+b
i)

-b:=a-b

|

Beweis: Wir miissen zeigen, dass das Ergebnis der Definition nicht von der speziellen Wahl der
Reprasentanten a und b fiir die Restklassen @ und b abhangt.

Zuerst ein Beispiel in Zg:
Esist 2 =38 und 5 = 17 modulo 6.

+5

[&;1
N
1

~l

24+5= =1, aber auch
84+17=25=1

Andere Reprasentanten derselben Restklassen liefern also dieselbe Summe.



In Z, sind alle Reprasentanten von a von der Form a+ z - n.

1) Esist a+ b= a+ b. Fiir zwei beliebige Reprasentanten derselben Restklassen gilt aber auch
atz-n+b+y-n=a+z-n+b+y-n=
at+b+(z+y)-n=a+b

i) Genauso:a-b=a-b, aber auch

atz-n-b+y-n=(@+z-n)-(b+y-n)=

a-b+a-y-n+b-z-n+y-z-n-n=a-b

d

Summe und Produkt sind also eindeutig definiert, unabhangig von der speziellen Wahl der Repra-
sentanten fiir 3 und b!

Zwei Beispiele: Wir stellen die Additions- und Multiplikationstafeln fiir Z4 und Zs auf.

Zat|0]1]2]3] ZsJo]1]2]3]
0 JoJ1[2]3 0 JoJoJo]o
1 [[1]2]3]0 1 [o0[1[2]3
2 [2]3]0]1 2 [o|2]02
3 3012 3 [0[3]2]1
Zs +]0|1]2]3]4] Zs-||o]1]2]3]4]
0 Jo[1]2[3]4 0 JoJoJo]o]o
1 [1]2[3]4]0 1 [o[1[2]3]4
2 |2]3]4|0]1 2 [of2]4[1]3
3 [3]4]0[1]2 3 [0[3]1[4]2
4 [4f0[1[2]3 4 [o[4[3]2]1

Satz 1.6. (Z,, +, -) geniigt allen Korperaxiomen ausser vii), welches die Existenz eines multiplika-
tiven Inversen verlangt fiir alle Elemente ausser O.

Beweis: Die Multiplikationstabelle von Z4 zeigt, dass Axiom vii) nicht erfiillt sein muss. Dort haben
nur die Elemente 1 und 3 ein multiplikatives Inverses.

Wir gehen die iibrigen Axiome Punkt fiir Punkt durch und erkennen, dass Z, das entsprechende
Rechengesetz von Z erbt!

a



Auch Z ist ja kein Korper, weil dort nur 1 und —1 ein Inverses haben. Fiir alle andern Zahlen n # 0
hat n- k =1 keine Losung in Z.

Aber alle andern Eigenschaften besitzt Z und gibt sie iiber die Definition von (Z,, +, -) auch an Z,
weiter. Wir werden solche ,Fast-Korper” spater einen ,kommutativen Ring" nennen.

Wenn wir die Multiplikationstafel von Zs betrachten, stellen wir fest, dass auch vii) erfiillt ist.

Zs ist also ein Korper!

Damit stellt sich die Frage: Fiir welche n € N mit n > 2 ist Z,, ein Korper?

Satz 1.7. Fiir die Restklassen Z, mit + und - sind die folgenden drei Aussagen dquivalent:

i) nist prim

i) Zp ist ein Zahlkorper

i) Zp hat keine ,Nullteiler"

Beweis: Wir zeigen i) = i) = iii) = i) |

) = ii)

i) = iii)

i) = i)

Sei n also prim. Wir miissen zeigen, dass dann jedes 3 € Z, mit 3 # 0 ein multiplikati-
ves Inverses besitzt.

Wir zeigen zuerst: Die n Restklassen 0 = a-0, a-1, a-2, ..., a-(n—1) sind alle
verschieden.

Sonst gabe es jund jmit 0<i<j<n und a-i=a-j,also a-(j—i)=0=n. Es
miisste also ein k € Z existieren mit

a-(J—1)=k-n

Die Primzahl n ist ein Teiler der Zahl k- n, sie muss daher auch ein Teiler von a oder
von (j — i) sein! Dies ist aber beides nicht moglich, da sowohl a<n und j—i<n.

Alle n Restklassen a- i sind somit verschieden. Dann muss eine davon 1 sein. Sei also
a-h=1. Danngiltabera-h=a-h=1, und hist das gesuchte multiplikative Inverse
von a.

Lemma 1.2 iii)

Wir zeigen —i) = —iii) !

Ist n keine Primzahl, so existieren a, b € Z mit a- b = n. Dann gilt aber
a-b=a-b=n=0, Z, enthilt also Nullteiler.

Ist p eine Primzahl (und nur dann!), dann ist Z, ein Kérper mit allem drum und dran.

Z2, Z3, Z5, Z7, le usw. sind also Kérper.

Damit haben wir schon einen schonen (aber noch unvollstandigen!) Katalog von Kérpern:

Q, R, C, Z, (p prim)



Jede lineare Gleichung hat in jedem dieser Korper eine eindeutige Losung, wenn der Koeffizient bei
der Variablen x nicht 0 ist:

Ein Beispiel in Z;:

2+3.-x=4 |+5
3.x=2 |-5  (371=5)
15-x =10 also
1-x=3 somit x =3

(alle Rechnungen modulo 7)

Test: 24+3-3=24+0=11=4

Einige kleine Aufgaben:
1. Betrachten Sie 2+ 3 - x = 4 als Gleichung in Zs und bestimmen Sie die Losung!
2. In Z»3: Finden Sie einfache Reprasentanten fiir —17 und %
3. Wie findet man allgemein die additive Gegenzahl zu a in Z,?
4. Bestimmen Sie 187! und 1971 in Z47. (47 ist prim)
5. Bestimmen Sie 187! und 1971 in Zo41. (241 ist prim)

6. Berechnen Sie von Hand das Produkt von 51 und 67 und priifen Sie Ihre Rechnung mit der
Siebenerprobe.

7. Sei p eine Primzahl. Wie kann man allgemein a—! bestimmen in Z,?  (schwierig!)

8. Wie viele Primzahlen gibt es iiberhaupt?
Welches ist die grosste?

Was bedeutet das fiir die Probleme 4. — 6. 7!

9. Sie kennen alle die Darstellung von Z als unendliche Punktreihe auf der Zahlengeraden.
Wie konnte man sich entsprechend Zs oder Zg vorstellen?



Neunerprobe und Rechnen modulo 9
Sie kennen alle die Neunerprobe beim Multiplizieren, Dividieren oder auch beim Addieren:

13 . 8 = 104
{ 4 +
4 . 8 = 5 4.8=32<5mod9

Also kann das Resultat stimmen!

2. Beispiel:
76 - 84 = 6384
} } }
13 12 21
1
4.3=12= 3 mod 9

5
3 = 3

Man bildet die ,einstellige Quersumme” und priift, ob fiir diese die Rechnung mod 9 stimmt!
Behauptung: Das Bilden der ,einstelligen Quersumme” bedeutet einfach, die Rechnung auf Zg zu
tibertragen, also 76 - 84 mod 9 zu priifen.

Beweis

1. Die Stellen auf ihre Ziffern reduzieren:
300 mod 9=3-100 mod 9=3-1 mod 9 =3
=6

60mod 9=6-10mod 9=6-1 mod 9
=7

7 mod 9
9, 99, 999, 9999 usw. sind alle =0 mod 9 !!

2. Die Quersumme bilden:
(300+60+7) mod 9 = Satz 1.5 i) !l
(3+6+7)mod9=16mod 9=7

O
-b=c,

Bemerkung: Stimmt die Rechnung a- b = ¢, dann muss sie auch ,modulo 9“ stimmen: a
wobei sich 3@, b und ¢ durch die ,einstellige Quersumme” bestimmen lassen.



Aber: Stimmt die Neunerprobe, so muss die Rechnung noch lange nicht stimmen!

Beispiel:
13 8 = 122
1 \: 1
4 8 5
4.8=32=5mod 9

Zum richtigen Resultat konnen beliebige Vielfache von 9 addiert oder subtrahiert werden.

Auch fir sehr grosse Primzahlen p ist es sehr leicht, die additive Gegenzahl in Z, zu finden:
a+(p—a)=0.

Anders ist es mit dem multiplikativen Inversen! Bei kleineren Primzahlen (sagen wir < 10000) findet
der TR mit einer for-Schleife noch schnell die Zahl b mit a-b = 1 modulo p. Dieses , Durchprobieren”
wird aber bald sehr langsam, wenn p gross wird. Zum Gliick gibt es aber eine wesentlich schnellere
Methode. Diese ist der Inhalt des nachsten Abschnittes.



