2 Ringe

Wir h
nennt

Defin

aben gesehen, dass Z, (also die Restklassen in Z modulo n) ,fast" einen Korper bilden. Wie
man denn sowas, und gibt es dazu noch weitere Beispiele?

ition 2.1. Eine Menge (r, +, -) mit zwei Operationen + und - heisst ein Ring, wenn die beiden

Operationen allen Korperaxiomen geniigen ausser vii) und viii). Ist auch viii) erfiillt (Kommutativitat

der M

Beme

ultiplikation), so sprechen wir von einem kommutativen Ring.

rkung: vii) betrifft die Existenz von multiplikativen Inversen.

Beispiele:

®

® © ©

(Z,+, -) ist ein kommutativer Ring.
(Zp,+,-) ist fiir jedes n > 1 ein kommutativer Ring.
Jeder Korper (k, 4+, -) ist sowieso ein kommutativer Ring.

Die Paare (a, b) € Z,, X Zp, bilden einen kommutativen Ring durch die Definitionen
(a,b)+ (c,d) =(a+c,b+d) und (a,b)-(c,d):=(a-c, b-d)
/! T A
+inZ, +inZn -iNZp - INZm

Wer spielt die Rollen von 0 und 177

Einige Aufgaben dazu:

N o o &

Ist fiir Primzahlen p Zp X Z, ein Korper?

. Was hat das mit einem Computerspiel zu tun, bei welchem das Raumschiff am linken Bildrand

wieder hereinkommt, wenn es rechts iiber den Rand hinausdriftet (analog oben und unten)?
Der Bildschirm habe 1024 x 800 Pixel ...

. Wir haben uns Zg vorgestellt als die Ecken eines regularen 8-Ecks, die entstehen, wenn man

die Zahlengerade geeignet zu einem Kreis biegt.

Wie hat man sich Zg x Zs vorzustellen?!

Basteln Sie sich ein Modell von Zg x Zs!

Die ldee, die von Z, zu Z,, X Z, fiihrte, lasst sich verallgemeinern ... wie?
Bilden Q7 und R7 ahnlich wie Z7 einen Ring oder gar einen Korper?

Kennen Sie Gerate, welche mod 12, mod 24 oder z. B. mod 10 000 rechnen? Welche? Weitere
Beispiele?



Alle Beispiele von Ringen, die wir bis jetzt betrachtet haben, waren kommutativ. Gibt es tiberhaupt
nicht-kommutative Ringe??

Wir missen jetzt einigen Aufwand betreiben, um solche Beispiele zu konstruieren. Sie haben aber
in Theorie und Praxis eine grosse Bedeutung: Es geht um das Rechnen mit Matrizen.

Definition 2.2. Sei (r,+,-) ein Ring. Dann nennen wir eine rechteckige Anordnung von n - m
Elementen aus r eine Matrix M (n, m € N). M hat dann n Zeilen und m Spalten. Man schreibt
auch M = (aj;), wobei der Index / von 1 bis n und der Index j von 1 bis m laufen soll.

Beispiele:

@O (rn+) =R+

(é 229 _03> ist eine 2 x 3-Matrix iiber R (ax3 =0, a1 =5)

B ist eine 3 x 1-Matrix iiber R
7 (n x 1-Matrizen heissen auch Vektoren)

1 2 3

4 5 6 | isteine 3 x 3-Matrix iiber R (a3 =6, asx = 8)

7 8 9.1

1 52

2 ist eine 3 x 2-Matrix iiber R (asx = —9, a»3 gibt es nicht)
3 -9

@ (n+)=12s

1 2 0\ .., . i
<4 3 1) ist eine 2 x 3-Matrix iiber Zs

1 2

3 4| ist eine 3 x 2-Matrix liber Zs
01

@ (r,+,:) =Z¢ (kein Korper)

genau so wie bei Zg

Bemerkung: Matrizen sind also rechteckige Anordnungen von Zahlen aus einem ganz bestimmten
Ring. Die Anzahl der Zeilen und Spalten ist immer eine natirliche Zahl > 1.

In der Informatik wiirde man von einem 2d-Array sprechen.



Definition 2.3. Die Menge aller n x m- Matrizen liber einem Ring r bezeichnen wir mit M "™*"(r)
oder einfach mit M["*™ wenn klar ist, auf welche Zahlen man sich bezieht.

Wir definieren nun fiir diese Matrizen ebenfalls eine Addition und eine Multiplikation.
Definition 2.4. Es seien A = (a;;) und B = (b;;) Matrizen aus M"*™(r). Dann ist die Addition
von A und B definiert durch

[A + B],’j = ajj + b,‘j

Bemerkung: Das i-j-te Element der Summe erhalten wir einfach, indem wir das i-j-te Element der
ersten Matrix mit dem /-j-ten Element der zweiten Matrix addieren.

Beispiel:
2 5 -7 n 4 3 2\ (6 8 -5
3 4 1 6 -4 2/ \9 0 3

Lemma 2.5. Diese Addition in M"*™(r) ist assoziativ und kommutativ. Es existiert ein Neutral-
element und jede Matrix besitzt ein additives Inverses.

Die Axiome i) — iv) sind also erfiillt.

Beweis: Banal. Benutzt wird, dass r selber ein Ring ist. O

Nun kénnte man ganz entsprechend eine Multiplikation in MI"*™(r) einfiihren, und es wiirde da-
durch auch ein Ring entstehen. Eine komponentenweise Multiplikation von a;; mit b;; hat aber
nirgends eine verniinftige Anwendung! Dagegen ist eine komplizierter definierte Multiplikation von
Matrizen von grosser Bedeutung. Diese studieren wir jetzt und erhalten damit auch ein ganz wich-
tiges Beispiel von einem nicht-kommutativen Ring.

Definition 2.6. Sei A € M"™(r) und B € M™*P(r). Dann definieren wir C = A- B mit

C € M"™P(r) durch
m
Cik = Z ajj - bjk
j=1

Salopp gesagt multipliziert man also die ,,i-te Zeile von A* mit der , k-ten Spalte von B", um das
Element c¢jx des Produkts C zu erhalten.

Beispiele:

(1) 1 2 3 12 17
-4 1 5 _12 g 29 -7
0 7 2 4 o) |15 25
5 -1 7 17 36

Esistz.B. 290=—4-(-2)+1-1+5-4, 29=0n



1

(3) 1 -5 10 -2 -19 -10
2 6| (0 315\ |-12 12 26 28
31 2143/ -2 10 7 18
4 0 0 12 4 20

Esist26 =3, 26=2-14+6-4

@ Noch ein Beispiel iiber dem Zahlkorper Z7:

(6 2 3)_ éi _(6 3)
15 4)7\; ¢ 1 4
Esistcop =4, 4=1-2+5-444-6

Welche Rechengesetze gelten nun fiir diese Matrix-Multiplikation?

Als erstes stellen wir fest, dass diese Multiplikation im Allgemeinen nicht kommutativ ist: In unseren
Beispielen (1) und (2) lasst sich das Produkt in der umgekehrten Reihenfolge der Faktoren gar nicht
bilden! Und bei den Beispielen (3) und (4) resultiert eine Matrix mit ganz anderen Kantenlangen.

Ist wenigstens das Produkt von quadratischen Matrizen kommutativ? Das folgende Beispiel zerstort

auch diese Hoffnung:

1 2 5 -1\ (1 -1

3 4 -2 0/ \7 -3

5 -1 12y (2 6

-2 0 3 4/ \-2 -4
Feststellung: Die Matrix-Multiplikation ist im Allgemeinen nicht kommutativ.

Ganz allgemein gilt hingegen

Lemma 2.7. Die Matrix-Multiplikation ist assoziativ. Existiert das Produkt (A- B) - C, so existiert
auch A- (B - C) und die beiden Produkte sind identisch.

Beweis: Sei also A€ MM B e M™*P und C € MP*9, wobei alle Zahlen aus demselben Ring r
stammen sollen. Dann existiert A- B und (A-B)-C, aber auch B-C und A- (B - C). Das Ergebnis
ist in beiden Fallen eine Matrix aus M"*9. Dass die beiden Matrizen identisch sind, liesse sich
mit grossem Schreibaufwand elementar beweisen. Diesen Aufwand wollen wir uns ausnahmsweise
einmal ersparen. O



Uberpriifen Sie aber die Assoziativitit der Matrix-Multiplikation am folgenden Beispiel:

0 2
1 3 =2 1 3 0 -2
A_<2 4 0>' B=13 9 C_<5 —1 2 1)
15
Berechnen Sie A- B und (A-B) - C, sowie B-C und A-(B-C).
Lemma 2.8. Die Matrix-Multiplikation ist distributiv. Ist A € M"*™ und sind B, C € M"*P und
D € MP*9, so gilt
) A-(B+C)=A-B+A-C
i) (B+C)-bD=B-D+C-D

Beweis: Die Rechnungen sind hier nicht so aufwendig, weil die Addition der Matrizen einfach ist:

m m m
) [A-(B+O)lik = Zaij - (bjk + gik) = Zalj'bjk"'za,'j'cj'k
J=1 Jj=1 j=1

:[A-B],'k—i—[A-C],'k:[A-B—FA'C],';(

i) Der Beweis von ii) lasst sich ganz dhnlich fiihren. O

Nun konnen wir uns der Frage zuwenden, welche Mengen von Matrizen durch die Addition und
Multiplikation selber zu einem Ring werden. Damit zu allen Elementen A und B auch die Produkte
A- B und B - A existieren, miissen wir uns auf Mengen von quadratischen Matrizen beschranken.

Nach Lemma 2.7 und Lemma 2.8 ist nur noch die Frage offen, ob es auch ein multiplikatives
Neutralelement gibt in M"*"(r).

Lemma 2.9. Es sei £ die n X n-Matrix mit ¢;; = 1 flir i = j und e;; = 0 fiir / # j. Dann gilt fur
ale Ae M™" E-A=Aund A- E = A.

Beweis: Weil die Multiplikation nicht kommutativ ist, miissen wir zwei Beweise fiihren:

n
(E-A)ik = E €j-ajk = €~ aik =1-ajk = a
=

Also gilt E- A= A. Genau so folgt A- E = A. O

Bemerkung: Man nennt E auch die ,Einheitsmatrix”. Bei den Rechnern der Firma T| kdnnen Sie
die n x n-Matrix E bequem erzeugen mit dem Befehl ,identity(n)".

Beispiel: ,identity(4)" liefert die Matrix E der Kantenlange 4

1 000
0100
E_0010
0 0 01



Korollar 2.10. Sei r ein Ring. Dann bilden die Elemente von M "™ "(r) beziiglich der komponen-
tenweisen Addition und der eben definierten Matrix-Multiplikation ebenfalls einen Ring. Fiir n > 1
ist dieser Ring nicht kommutativ.

Beweis: Lemma 2.5, Lemma 2.7, Lemma 2.8 und Lemma 2.9 sowie das Beispiel zweier Matrizen
A BeM?2(Z)mit A-B#B-A. O

Im Ring Z, haben wir die Frage untersucht, welche Elemente ein multiplikatives Inverses haben und
wie man dieses effizient berechnen kann.

Diese Frage stellen wir uns auch fiir M"*"(r), wo r ein Ring ist. Da der Ring der Matrizen aber
nicht kommutativ ist, ist einiges ein bisschen komplizierter.

Definition 2.11. Sei A € M"*"(r). A heisst invertierbar, wenn es Matrizen B und C in M"™"(r)
gibt, sodassgilt A-B=E und C-A=E.
A muss also durch Multiplikation sowohl von links als auch von rechts auf die Einheitsmatrix iiber-
fiihrt werden konnen. Immerhin gilt
Lemma 2.12. A sei eine invertierbare Matrix in MI"*"(r). Dann gilt

(A-B=E und C-A=E) = B=C
Beweis: B=E-B=(C-A)-B=C-(A-B)=C-E=C O

Wir miissen also nicht zwischen der linksinversen und der rechtsinversen Matrix unterscheiden, und
zu jeder invertierbaren Matrix A gibt es also eine Matrix B mit A-B = E und B- A= E. Wir
zeigen noch, dass diese inverse Matrix B eindeutig bestimmt ist:

Lemma 2.13. Es sei A eine invertierbare Matrix in M"*"(r), und fir B € M"™"(r) gelte A-B = E
und B - A= E. Dann gilt fiir alle Matrizen C und D aus M"*"(r)

) A-C=E = (C=B

i) D-A=E = D=8

Beweis: A-C
D-A

— C=E-C=(B-A)-C=B-(A-C)=B-E=B8

E
E = D=D-E=D-(A-B)=(D-A)-B=E-B=8B O

Ist A invertierbar, so ist die inverse Matrix B = A~! zu A eindeutig bestimmt, und wegen A-B = E
und B - A = E ist auch die inverse Matrix B invertierbar , und esist B~ = A, also (A71)"1 = A

Der Vollstandigkeit halber zeigen wir noch, dass auch das Produkt von invertierbaren Matrizen
wieder eine invertierbare Matrix ist:

Lemma 2.14. Sind A und B invertierbare Matrizen in M"*"(r), so sind auch A- B und B - A
invertierbar.

Beweis: Es ist (A- B)~* = B~ . A=! nach der folgenden Rechnung:
(A-B)-(BL- A=A (B-B 1) AloA.E-Al—A.A1—F =



Wir betrachten nun den Spezialfall, wo der zugrundeliegende Ring ein Korper ist. In einem Korper
sind ja lineare Gleichungen mit einer Unbekannten eindeutig Iosbar (Lemma 1.3). Wir zeigen nun,
was die Matrizen von M"*"(k) mit den linearen Gleichungssystemen der Art ,n Gleichungen fiir n
Unbekannte” zu tun haben.

Gegeben sei ein Gleichungssystem, der zugrundeliegende Zahlkorper k sei R:

I y—z=25
[l 2x + b5y +4z
[ X+2y+3z =2

I
\l

Das Gleichungssystem kann in Matrix-Form geschrieben werden als

01 -1 X 5

2 5 4 v =17

1 2 3 z 2
oder abgekiirzt A-X=V

Dieses Gleichungssystem ist genau dann eindeutig l6sbar, wenn die Matrix A ein multiplikatives
Inverses hat. Existiert A=! mit A=!. A= E, so gilt
AL (A-X)=A1.Vv
(AL A)- X=A1.V
E-X=A1.Vv

also X=A1l.v

Dringend gewiinscht sind also zwel Methoden: Eine erste, mit der man entscheiden kann, ob ei-
ne Matrix A € M"™"(k) invertierbar ist, und eine zweite, mit der man die inverse Matrix A1
gegebenenfalls auch berechnen kann.

Carl Friedrich Gauss, der ,Fiirst der Mathematiker”, hat ein Verfahren angegeben, welches gleich
beides leistet. Falls A~1 existiert, liefert es die inverse Matrix und gleichzeitig auch noch die Lésung
des Gleichungssystems.

Wir starten mit A|E |V, vertauschen Zeilen und bilden Linearkombinationen einer Zeile mit Viel-
fachen von einer andern. Schliesslich erhalten wir £ A=Y | X:

() | 0 1 -1 1 0 0 5
I 4
1l 1 2 3 0 0 1 2

N
=
o
~

2 Il 1 2 3/ 0 o0 1| 2
| -1
=211 o 1 -2 0 1 -2/ 3

(@)
—
—
(@)
(@)
o1




@ | =211 1 0 5] —2 0 1] -8
I
I— 11 0 0 1 1 -1 2 2

=
|
=
=
(@)
o1

@ | —5-11I 1 0 0| -7 5 —9| —18
4111 1 -1 2 7
1l 0 0 1 1 -1 2 2

Prifen Sie die folgenden Behauptungen:

-7 5 =9 X —18
Al=|2 -1 2 und X=1|y]| = 7
1 -1 2 z 2

Gelingt es links die Matrix E herzustellen, dann hat das Gleichungssystem genau eine Losung, und
das Verfahren liefert uns A=! und die Losung X.

Ein Beweis, dass der Gauss-Algorithmus immer korrekt entscheidet, findet sich im Skriptum
LinAlg_03.

In den TI- Taschenrechnern ist der Gauss-Algorithmus mit dem Befehl rref(m) implementiert, wo
m eine Matrix ist:

@

= N O
N O =
w =
O O =
o~ O
= O O
N N Ol
3

@ rref(m) liefert die Matrix

100 -v 5 -9 -18
010 2 -1 2 7
Ooo0o1 1-1 2 2

Nebenbei: m~1 liefert fiir eine Matrix m auch ihre Inverse.

Gelingt es rref() oder dem Gauss-Algorithmus nicht, vorne die Matrix E zu bilden, dann existiert
A~1 nicht und das Gleichungssystem hat nicht eine eindeutige Ldsung, sondern es gibt keine oder
viele Losungen. Welcher dieser beiden Fille vorliegt, lasst sich ebenfalls am Ergebnis des Gauss-
Algorithmus ablesen.

Lasst man bei (1) die Einheitsmatrix (also die Spalten 4, 5 und 6) weg, so liefert der Gauss-
Algorithmus immer noch die Losung des Gleichungssystems, aber nicht mehr die inverse Matrix.



Zum Abschluss berechnen wir noch die inverse Matrix zu A in M3*3(Z;):

2 05
A=[1 3 4] eM3*3(Z7)
6 1 2
(1) | 2 0 51 0
I 1 4 1
Il 6 1 20 0 1
2 I 1 4 1 0
I 4+5-11 0 1 4|1 5
I+ 111 0 4 60 1 1
(3) I+ 111 1 3 2 1
I 0 1 4|1 5
H+3-1 0 0 43 2 1
(4) |+ 11l 1 0 0[3 4 2
=1 1 5 3 6
2-1ll 0 16 4 2
3.4 2
Es ist Al=[5 3 6
6 4 2

Kontrollieren Sie unsere Rechnung mit dem TR. Verwenden Sie die Funktion mod (a - b, 7), wo
a=Aundb=A""1



Aufgaben:

1. Schreiben Sie das folgende Gleichungssystem in der Sprache der Matrizen, also in der Form
A-X=V:
—w—+3x—-2y+z =17
w+2x -3y —4z = 10
3w —x+4+4y 42z =21
2w —5x+y+3z = 15

a) Losen Sie das Gleichungssystem von Hand mit dem Gauss-Algorithmus und bestimmen
Sie gleichzeitig die inverse Matrix A™1,

b) Machen Sie dasselbe mit dem TR und dem Befehl rref().

c) Geben Sie A und V in den TR ein. Lassen Sie A~ mit der Kehrwertfunktion berechnen
und bestimmen Sie die Lésung X des Systems durch X = A= . V.

2. a) Lassen Sie sich z. B. durch mod(randmat(4,4),7) — m zufallige Matrizen aus M "*"(Z;)
erzeugen.

b) Priifen Sie, ob die erzeugte Matrix m invertierbar ist, indem Sie m~* berechnen lassen.

c) m ist invertierbar, wenn die Zahl det(m) verschieden von 0 ist.
(Mitteilung ohne Beweis)

d) Programmieren Sie eine Funktion matinver(m,p), welcher Sie eine Matrix iibergeben kon-
nen und die lhnen (falls sie existiert!) die inverse Matrix m~1 in M"*"(Z,) zuriickgibt.

3. Berechnen Sie von Hand die inverse Matrix zu A in Z11:

N N A
=~ ~
w oo~
O N 00 O

Priifen Sie zuerst mit mod(det(a),11), ob die Determinante von A auch verschieden ist von
null.

Version 2.01, vom Nov 2012

Ausgearbeitet von Martin Gubler, Kantonsschule Frauenfeld, anno 1999

Mit IATEX in eine lesbare Form gebracht von Alfred Hepp im Juni 2011
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