
2 Ringe

Wir haben gesehen, dass Zn (also die Restklassen in Z modulo n) „fast“ einen Körper bilden. Wie
nennt man denn sowas, und gibt es dazu noch weitere Beispiele?

Definition 2.1. Eine Menge (r,+, ·) mit zwei Operationen + und · heisst ein Ring, wenn die beiden
Operationen allen Körperaxiomen genügen ausser vii) und viii). Ist auch viii) erfüllt (Kommutativität
der Multiplikation), so sprechen wir von einem kommutativen Ring.

Bemerkung: vii) betrifft die Existenz von multiplikativen Inversen.

Beispiele:

1 (Z,+, ·) ist ein kommutativer Ring.

2 (Zn,+, ·) ist für jedes n > 1 ein kommutativer Ring.

3 Jeder Körper (k,+, ·) ist sowieso ein kommutativer Ring.

4 Die Paare (a, b) ∈ Zn × Zm bilden einen kommutativen Ring durch die Definitionen

(a, b) + (c, d) := (a + c, b + d) und (a, b) · (c, d) := (a · c, b · d)

Wer spielt die Rollen von 0 und 1??

↗
+ inZn

↑
+ inZm

↗
· inZn

↑
· inZm

Einige Aufgaben dazu:

1. Ist für Primzahlen p Zp × Zp ein Körper?

2. Was hat das mit einem Computerspiel zu tun, bei welchem das Raumschiff am linken Bildrand
wieder hereinkommt, wenn es rechts über den Rand hinausdriftet (analog oben und unten)?
Der Bildschirm habe 1024× 800 Pixel . . .

3. Wir haben uns Z8 vorgestellt als die Ecken eines regulären 8-Ecks, die entstehen, wenn man
die Zahlengerade geeignet zu einem Kreis biegt.

Wie hat man sich Z8 × Z5 vorzustellen?!

4. Basteln Sie sich ein Modell von Z8 × Z5!

5. Die Idee, die von Zn zu Zn × Zm führte, lässt sich verallgemeinern . . . wie?

6. Bilden Q 7 und R7 ähnlich wie Z7 einen Ring oder gar einen Körper?

7. Kennen Sie Geräte, welche mod 12, mod 24 oder z. B. mod 10 000 rechnen? Welche? Weitere
Beispiele?
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Alle Beispiele von Ringen, die wir bis jetzt betrachtet haben, waren kommutativ. Gibt es überhaupt
nicht-kommutative Ringe??

Wir müssen jetzt einigen Aufwand betreiben, um solche Beispiele zu konstruieren. Sie haben aber
in Theorie und Praxis eine grosse Bedeutung: Es geht um das Rechnen mit Matrizen.

Definition 2.2. Sei (r,+, ·) ein Ring. Dann nennen wir eine rechteckige Anordnung von n · m
Elementen aus r eine Matrix M (n,m ∈ N). M hat dann n Zeilen und m Spalten. Man schreibt
auch M = (ai j), wobei der Index i von 1 bis n und der Index j von 1 bis m laufen soll.

Beispiele:

1 (r,+, ·) = (R,+, ·)(
1 2.9 −3
5 2 0

)
3.8−5
7


1 2 3

4 5 6

7 8 9.1


1 5.22 π

3 −9


2 (r,+, ·) = Z5(

1 2 0

4 3 1

)
1 23 4
0 1


3 (r,+, ·) = Z6 (kein Körper)

genau so wie bei Z5

ist eine 2× 3 -Matrix über R (a23 = 0, a21 = 5)

ist eine 3× 1 - Matrix über R
(n × 1 - Matrizen heissen auch Vektoren)

ist eine 3× 3 -Matrix über R (a23 = 6, a32 = 8)

ist eine 3× 2 -Matrix über R (a32 = −9, a23 gibt es nicht)

ist eine 2× 3 -Matrix über Z5

ist eine 3× 2 -Matrix über Z5

Bemerkung: Matrizen sind also rechteckige Anordnungen von Zahlen aus einem ganz bestimmten
Ring. Die Anzahl der Zeilen und Spalten ist immer eine natürliche Zahl ≥ 1.

In der Informatik würde man von einem 2d-Array sprechen.
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Definition 2.3. Die Menge aller n ×m - Matrizen über einem Ring r bezeichnen wir mit M n×m(r)
oder einfach mit M n×m, wenn klar ist, auf welche Zahlen man sich bezieht.

Wir definieren nun für diese Matrizen ebenfalls eine Addition und eine Multiplikation.

Definition 2.4. Es seien A = (ai j) und B = (bi j) Matrizen aus M n×m(r). Dann ist die Addition
von A und B definiert durch

[A+ B]i j = ai j + bi j

Bemerkung: Das i-j-te Element der Summe erhalten wir einfach, indem wir das i-j-te Element der
ersten Matrix mit dem i-j-ten Element der zweiten Matrix addieren.

Beispiel:(
2 5 −7
3 4 1

)
+

(
4 3 2

6 −4 2

)
=

(
6 8 −5
9 0 3

)

Lemma 2.5. Diese Addition in M n×m(r) ist assoziativ und kommutativ. Es existiert ein Neutral-
element und jede Matrix besitzt ein additives Inverses.

Die Axiome i) – iv) sind also erfüllt.

Beweis: Banal. Benutzt wird, dass r selber ein Ring ist. 2

Nun könnte man ganz entsprechend eine Multiplikation in M n×m(r) einführen, und es würde da-
durch auch ein Ring entstehen. Eine komponentenweise Multiplikation von ai j mit bi j hat aber
nirgends eine vernünftige Anwendung! Dagegen ist eine komplizierter definierte Multiplikation von
Matrizen von grosser Bedeutung. Diese studieren wir jetzt und erhalten damit auch ein ganz wich-
tiges Beispiel von einem nicht-kommutativen Ring.

Definition 2.6. Sei A ∈ M n×m(r) und B ∈ Mm×p(r). Dann definieren wir C = A · B mit
C ∈M n×p(r) durch

cik =

m∑
j=1

ai j · bjk

Salopp gesagt multipliziert man also die „ i-te Zeile von A“ mit der „k-ten Spalte von B“, um das
Element cik des Produkts C zu erhalten.

Beispiele:

1

1 2 3

−4 1 5

0 7 2

5 −1 7

 ·
−2 51 3

4 2

 =

12 17

29 −7
15 25

17 36


Es ist z. B. 29 = −4 · (−2) + 1 · 1 + 5 · 4, 29 = c21
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2 (
2 3 −4 1
5 7 6 0

)
·


4

−3
2

1

 = (
−8
11

)

3

1 −5
2 6

3 1

4 0

 · ( 0 3 1 5

−2 1 4 3

)
=


10 −2 −19 −10
−12 12 26 28

−2 10 7 18

0 12 4 20


Es ist 26 = c23, 26 = 2 · 1 + 6 · 4

4 Noch ein Beispiel über dem Zahlkörper Z7:(
6 2 3

1 5 4

)
·

1 23 4
5 6

 = (
6 3

1 4

)

Es ist c22 = 4, 4 = 1 · 2 + 5 · 4 + 4 · 6

Welche Rechengesetze gelten nun für diese Matrix-Multiplikation?

Als erstes stellen wir fest, dass diese Multiplikation im Allgemeinen nicht kommutativ ist: In unseren

Beispielen 1 und 2 lässt sich das Produkt in der umgekehrten Reihenfolge der Faktoren gar nicht

bilden! Und bei den Beispielen 3 und 4 resultiert eine Matrix mit ganz anderen Kantenlängen.

Ist wenigstens das Produkt von quadratischen Matrizen kommutativ? Das folgende Beispiel zerstört
auch diese Hoffnung: (

1 2

3 4

)
·
(
5 −1
−2 0

)
=

(
1 −1
7 −3

)
(
5 −1
−2 0

)
·
(
1 2

3 4

)
=

(
2 6

−2 −4

)

Feststellung: Die Matrix-Multiplikation ist im Allgemeinen nicht kommutativ.

Ganz allgemein gilt hingegen

Lemma 2.7. Die Matrix-Multiplikation ist assoziativ. Existiert das Produkt (A ·B) · C, so existiert
auch A · (B · C) und die beiden Produkte sind identisch.

Beweis: Sei also A ∈M n×m, B ∈Mm×p und C ∈M p×q, wobei alle Zahlen aus demselben Ring r
stammen sollen. Dann existiert A ·B und (A ·B) ·C, aber auch B ·C und A · (B ·C). Das Ergebnis
ist in beiden Fällen eine Matrix aus M n×q. Dass die beiden Matrizen identisch sind, liesse sich
mit grossem Schreibaufwand elementar beweisen. Diesen Aufwand wollen wir uns ausnahmsweise
einmal ersparen. 2
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Überprüfen Sie aber die Assoziativität der Matrix-Multiplikation am folgenden Beispiel:

A =

(
1 3 −2
2 4 0

)
, B =

0 23 0
1 5

, C =

(
1 3 0 −2
5 −1 2 1

)

Berechnen Sie A · B und (A · B) · C, sowie B · C und A · (B · C).

Lemma 2.8. Die Matrix-Multiplikation ist distributiv. Ist A ∈ M n×m und sind B,C ∈ Mm×p und
D ∈M p×q, so gilt

i) A · (B + C) = A · B + A · C

ii) (B + C) ·D = B ·D + C ·D

Beweis: Die Rechnungen sind hier nicht so aufwendig, weil die Addition der Matrizen einfach ist:

i) [A · (B + C)]ik =
m∑
j=1

ai j · (bjk + cjk) =
m∑
j=1

ai j · bjk +
m∑
j=1

ai j · cjk

= [A · B]ik + [A · C]ik = [A · B + A · C]ik

ii) Der Beweis von ii) lässt sich ganz ähnlich führen. 2

Nun können wir uns der Frage zuwenden, welche Mengen von Matrizen durch die Addition und
Multiplikation selber zu einem Ring werden. Damit zu allen Elementen A und B auch die Produkte
A ·B und B ·A existieren, müssen wir uns auf Mengen von quadratischen Matrizen beschränken.

Nach Lemma 2.7 und Lemma 2.8 ist nur noch die Frage offen, ob es auch ein multiplikatives
Neutralelement gibt in M n×n(r).

Lemma 2.9. Es sei E die n × n -Matrix mit ei j = 1 für i = j und ei j = 0 für i ̸= j . Dann gilt für
alle A ∈M n×n E · A = A und A · E = A.

Beweis: Weil die Multiplikation nicht kommutativ ist, müssen wir zwei Beweise führen:

(E · A)ik =
n∑
j=1

ei j · ajk = ei i · aik = 1 · aik = aik

Also gilt E · A = A. Genau so folgt A · E = A. 2

Bemerkung: Man nennt E auch die „Einheitsmatrix“. Bei den Rechnern der Firma TI können Sie
die n × n -Matrix E bequem erzeugen mit dem Befehl „identity(n)“.

Beispiel: „identity(4)“ liefert die Matrix E der Kantenlänge 4

E =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



5



Korollar 2.10. Sei r ein Ring. Dann bilden die Elemente von M n×n(r) bezüglich der komponen-
tenweisen Addition und der eben definierten Matrix-Multiplikation ebenfalls einen Ring. Für n > 1
ist dieser Ring nicht kommutativ.

Beweis: Lemma 2.5, Lemma 2.7, Lemma 2.8 und Lemma 2.9 sowie das Beispiel zweier Matrizen
A,B ∈M 2×2(Z) mit A · B ̸= B · A. 2

Im Ring Zn haben wir die Frage untersucht, welche Elemente ein multiplikatives Inverses haben und
wie man dieses effizient berechnen kann.

Diese Frage stellen wir uns auch für M n×n(r), wo r ein Ring ist. Da der Ring der Matrizen aber
nicht kommutativ ist, ist einiges ein bisschen komplizierter.

Definition 2.11. Sei A ∈ M n×n(r). A heisst invertierbar, wenn es Matrizen B und C in M n×n(r)
gibt, so dass gilt A · B = E und C · A = E.

A muss also durch Multiplikation sowohl von links als auch von rechts auf die Einheitsmatrix über-
führt werden können. Immerhin gilt

Lemma 2.12. A sei eine invertierbare Matrix in M n×n(r). Dann gilt

(A · B = E und C · A = E) =⇒ B = C

Beweis: B = E · B = (C · A) · B = C · (A · B) = C · E = C 2

Wir müssen also nicht zwischen der linksinversen und der rechtsinversen Matrix unterscheiden, und
zu jeder invertierbaren Matrix A gibt es also eine Matrix B mit A · B = E und B · A = E. Wir
zeigen noch, dass diese inverse Matrix B eindeutig bestimmt ist:

Lemma 2.13. Es sei A eine invertierbare Matrix inM n×n(r), und für B ∈M n×n(r) gelte A ·B = E
und B · A = E. Dann gilt für alle Matrizen C und D aus M n×n(r)

i) A · C = E =⇒ C = B

ii) D · A = E =⇒ D = B

Beweis: A · C = E =⇒ C = E · C = (B · A) · C = B · (A · C) = B · E = B
D · A = E =⇒ D = D · E = D · (A · B) = (D · A) · B = E · B = B 2

Ist A invertierbar, so ist die inverse Matrix B = A−1 zu A eindeutig bestimmt, und wegen A ·B = E
und B · A = E ist auch die inverse Matrix B invertierbar , und es ist B−1 = A, also (A−1)−1 = A.

Der Vollständigkeit halber zeigen wir noch, dass auch das Produkt von invertierbaren Matrizen
wieder eine invertierbare Matrix ist:

Lemma 2.14. Sind A und B invertierbare Matrizen in M n×n(r), so sind auch A · B und B · A
invertierbar.

Beweis: Es ist (A · B)−1 = B−1 · A−1 nach der folgenden Rechnung:

(A · B) · (B−1 · A−1) = A · (B · B−1) · A−1 = A · E · A−1 = A · A−1 = E 2
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Wir betrachten nun den Spezialfall, wo der zugrundeliegende Ring ein Körper ist. In einem Körper
sind ja lineare Gleichungen mit einer Unbekannten eindeutig lösbar (Lemma 1.3). Wir zeigen nun,
was die Matrizen von M n×n(k) mit den linearen Gleichungssystemen der Art „n Gleichungen für n
Unbekannte“ zu tun haben.

Gegeben sei ein Gleichungssystem, der zugrundeliegende Zahlkörper k sei R:

I y − z = 5
II 2x + 5y + 4z = 7

III x + 2y + 3z = 2

Das Gleichungssystem kann in Matrix-Form geschrieben werden als0 1 −12 5 4

1 2 3

 ·
xy
z

 =
57
2


oder abgekürzt A ·X = V

Dieses Gleichungssystem ist genau dann eindeutig lösbar, wenn die Matrix A ein multiplikatives
Inverses hat. Existiert A−1 mit A−1 · A = E, so gilt

A−1 · (A ·X) = A−1 · V

(A−1 · A) · X = A−1 · V

E · X = A−1 · V

also X = A−1 · V

Dringend gewünscht sind also zwei Methoden: Eine erste, mit der man entscheiden kann, ob ei-
ne Matrix A ∈ M n×n(k) invertierbar ist, und eine zweite, mit der man die inverse Matrix A−1

gegebenenfalls auch berechnen kann.

Carl Friedrich Gauss, der „Fürst der Mathematiker“, hat ein Verfahren angegeben, welches gleich
beides leistet. Falls A−1 existiert, liefert es die inverse Matrix und gleichzeitig auch noch die Lösung
des Gleichungssystems.

Wir starten mit A |E | V , vertauschen Zeilen und bilden Linearkombinationen einer Zeile mit Viel-
fachen von einer andern. Schliesslich erhalten wir E |A−1 |X:

1 I 0 1 −1 1 0 0 5
II 2 5 4 0 1 0 7
III 1 2 3 0 0 1 2

2 III 1 2 3 0 0 1 2
I 0 1 −1 1 0 0 5

II− 2 · III 0 1 −2 0 1 −2 3
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3 I− 2 · II 1 0 5 −2 0 1 −8
II 0 1 −1 1 0 0 5

II− III 0 0 1 1 −1 2 2

4 I− 5 · III 1 0 0 −7 5 −9 −18
II+ III 0 1 0 2 −1 2 7

III 0 0 1 1 −1 2 2

Prüfen Sie die folgenden Behauptungen:

A−1 =

−7 5 −9
2 −1 2

1 −1 2

 und X =

xy
z

 =
−187
2


Gelingt es links die Matrix E herzustellen, dann hat das Gleichungssystem genau eine Lösung, und
das Verfahren liefert uns A−1 und die Lösung X.

Ein Beweis, dass der Gauss-Algorithmus immer korrekt entscheidet, findet sich im Skriptum
LinAlg_03.

In den TI - Taschenrechnern ist der Gauss-Algorithmus mit dem Befehl rref(m) implementiert, wo
m eine Matrix ist:

1

0 1 −1 1 0 0 5

2 5 4 0 1 0 7

1 2 3 0 0 1 2

 −→ m

2 rref(m) liefert die Matrix1 0 0 −7 5 −9 −18
0 1 0 2 −1 2 7

0 0 1 1 −1 2 2


Nebenbei: m−1 liefert für eine Matrix m auch ihre Inverse.

Gelingt es rref( ) oder dem Gauss-Algorithmus nicht, vorne die Matrix E zu bilden, dann existiert
A−1 nicht und das Gleichungssystem hat nicht eine eindeutige Lösung, sondern es gibt keine oder
viele Lösungen. Welcher dieser beiden Fälle vorliegt, lässt sich ebenfalls am Ergebnis des Gauss-
Algorithmus ablesen.

Lässt man bei 1 die Einheitsmatrix (also die Spalten 4, 5 und 6) weg, so liefert der Gauss-
Algorithmus immer noch die Lösung des Gleichungssystems, aber nicht mehr die inverse Matrix.
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Zum Abschluss berechnen wir noch die inverse Matrix zu A in M 3×3(Z7):

A =

2 0 51 3 4

6 1 2

 ∈M 3×3(Z7)
1 I 2 0 5 1 0 0

II 1 3 4 0 1 0
III 6 1 2 0 0 1

2 II 1 3 4 0 1 0
I+5 · II 0 1 4 1 5 0
II+ III 0 4 6 0 1 1

3 I+ III 1 0 3 0 2 1
II 0 1 4 1 5 0

III+3 · II 0 0 4 3 2 1

4 I+ III 1 0 0 3 4 2
II− III 0 1 0 5 3 6
2 · III 0 0 1 6 4 2

Es ist A−1 =

3 4 25 3 6

6 4 2


Kontrollieren Sie unsere Rechnung mit dem TR. Verwenden Sie die Funktion mod (a · b, 7), wo
a = A und b = A−1.
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Aufgaben:

1. Schreiben Sie das folgende Gleichungssystem in der Sprache der Matrizen, also in der Form
A ·X = V :

−w + 3x − 2y + z = 17
w + 2x − 3y − 4z = 10
3w − x + 4y + 2z = 21
2w − 5x + y + 3z = 15

a) Lösen Sie das Gleichungssystem von Hand mit dem Gauss-Algorithmus und bestimmen
Sie gleichzeitig die inverse Matrix A−1.

b) Machen Sie dasselbe mit dem TR und dem Befehl rref( ).

c) Geben Sie A und V in den TR ein. Lassen Sie A−1 mit der Kehrwertfunktion berechnen
und bestimmen Sie die Lösung X des Systems durch X = A−1 · V .

2. a) Lassen Sie sich z. B. durch mod(randmat(4,4),7)→m zufällige Matrizen aus M n×n(Z7)
erzeugen.

b) Prüfen Sie, ob die erzeugte Matrix m invertierbar ist, indem Sie m−1 berechnen lassen.

c) m ist invertierbar, wenn die Zahl det(m) verschieden von 0 ist.
(Mitteilung ohne Beweis)

d) Programmieren Sie eine Funktion matinver(m,p), welcher Sie eine Matrix übergeben kön-
nen und die Ihnen (falls sie existiert!) die inverse Matrix m−1 in M n×n(Zp) zurückgibt.

3. Berechnen Sie von Hand die inverse Matrix zu A in Z11:

A =


1 8 7 6

4 7 5 8

7 7 5 2

2 1 3 9


Prüfen Sie zuerst mit mod(det(a),11), ob die Determinante von A auch verschieden ist von
null.

Version 2.01, vom Nov 2012

Ausgearbeitet von Martin Gubler, Kantonsschule Frauenfeld, anno 1999

Mit LATEX in eine lesbare Form gebracht von Alfred Hepp im Juni 2011

10


