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1 Bemerkungen zum Begriff des Kegelschnitts

Die Lösungsmenge der Gleichung x2 + y2 = z2 ist ein Doppelkegel mit der Spitze im Nullpunkt
und der z-Achse als Rotationsachse:

Schneiden wir diesen Doppelkegel mit einer beliebigen Ebene E

E : a · x + b · y + c · z + d = 0

so können wir zwei Fälle unterscheiden: d = 0 oder d "= 0.

Fall d = 0 : Die Ebene geht durch den Nullpunkt, also durch die Spitze des Doppelkegels, und als
Schnittmenge ergibt sich ein Punkt, eine Mantellinie oder ein Paar von Mantelinien, die sich im
Nullpunkt schneiden.

Fall d "= 0: Die Ebene schneidet die z-Achse in Q "= O oder sie ist parallel zur z-Achse. Die
Schnittkurve ist ein Kreis, eine Ellipse, eine Parabel oder eine Hyperbel.

Alle diese Kegelschnitte lassen sich als Lösungsmengen einer quadratischen Gleichung mit zwei
Unbekannten beschreiben:

A · x2 + 2 · B · x · y + C · y2 + 2 ·D · x + 2 · E · y + F = 0

Die Umkehrung ist aber falsch: Nicht alle Lösungen einer solchen Gleichung entsprechen einem Ke-
gelschnitt! Dies ist ein erster Anlass zur Verwirrung, da oft alle Lösungen einfach als Kegelschnitte
bezeichnet werden.
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Betrachten wir die folgenden Beispiele:

• x2 + y2 = −1 Die Lösungsmenge ist leer

• x2 = 1 Lösungsmenge ist ein Paar paralleler Geraden ( x = ±1, y ist beliebig)

Diese Lösungsmengen lassen sich geometrisch nicht als Kegelschnitt realisieren, und es ist auch
nicht sinnvoll, sie als „entartete Kegelschnitte“ zu bezeichnen.

Wenn wir alle Lösungen geometrisch interpretieren wollen, müssen wir weitere Flächen zulassen,
die dann von einer Ebene geschnitten werden.

Betrachten wir zwei Geraden g und h im Raum, die sich unter einem spitzen Winkel schneiden.
Lassen wir h um g rotieren, so entsteht ein Doppelkegel. Die möglichen ebenen Schnitte haben
wir oben beschrieben.

Sind die beiden Geraden parallel, so entsteht bei der Rotation von h um g ein Zylinder. Schneiden
wir diesen Zylinder mit einer Ebene, so entsteht ein Kreis, eine Ellipse, zwei parallele Geraden, eine
Gerade oder die leere Menge. Damit sind fast alle Lösungen abgedeckt, wenn die Gleichung wirklich
quadratisch ist, wenn also nicht A, B und C gleichzeitig null sind.

Einen einzigen Fall erreichen wir so nicht: Die Lösungsmenge kann auch leer sein, wenn die De-
terminanten, die wir noch definieren werden, beide verschieden sind von null. Wir müssen daher
auch noch die Kugel als Fläche zulassen, die wir mit einer Ebene schneiden. Das gibt dann Kreise,
einen einzelnen Punkt oder eben die leere Menge. Anstelle der Kugeln könnten wir auch allgemeiner
Ellipsoide zulassen.

Die weiteren Kapitel dieser Arbeit werden zeigen, dass der folgende Satz gilt:

„Die Lösungen einer echt quadratischen Gleichung mit zwei Unbekannten lassen sich geo-
metrisch immer als Schnitt eines Doppelkegels, eines Kreiszylinders oder einer Kugel mit
der xy -Ebene realisieren. Ist die Lösungsmenge nicht leer, so lässt sie sich immer als
Kegelschnitt oder als Zylinderschnitt realisieren.“

„Kegelschnitte“ sind also Kegelschnitte, Zylinderschnitte oder Kugelschnitte.

Auch die Lösungen der linearen Gleichung mit zwei Unbekannten können wir auf ähnliche Art
generieren: Schneiden sich die beiden Geraden unter einem 90◦-Winkel, so entsteht bei der Rotation
von h um g eine Ebene. Schneiden wir diese Fläche im Raum mit einer weiteren Ebene, so finden
wir als Lösungsmenge eine Gerade, die leere Menge oder aber die ganze Ebene.

Die letzte Möglichkeit für zwei komplanare Geraden besteht darin, dass sie identisch sind. Die
Rotations- „fläche“ bei der Rotation von h um g ist dann die Gerade g selber, und beim Schnitt
mit einer Ebene entstehen ein Punkt, die leere Menge oder die Gerade selber.

Wie sieht die Situation aus, wenn man von zwei windschiefen Geraden ausgeht ? Stehen die beiden
nicht gerade senkrecht zueinander so entsteht bei der Rotation von h um g ein Hyperboloid. Das
Bild auf der folgenden Seite zeigt gut, dass dieser Körper aus der Rotation einer Geraden heraus
verstanden werden kann. Wenn Sie dem Link [1] folgen, können Sie den Zwischenwinkel der Achsen
verändern und das Getriebe laufen lassen.
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Auch diese Hyperboloide können als quadratische Gleichung mit 3 Unbekannten geschrieben werden.
Das einschalige Hyperboloid unten links ist die Fläche, welche zur Gleichung

x2 + y2 − z2 = 1

gehört. Der Schnitt mit einer Ebene kann (nach einer Rotation) immer als Schnitt mit der xy -
Ebene aufgefasst werden und liefert damit eine quadratische Gleichung mit zwei Unbekannten. Als
Schnittfiguren entstehen hier Kreise, Ellipsen, Parabeln, Hyperbeln und Paare von Geraden. Punkte,
einzelne Geraden oder die leere Menge sind nicht möglich.

einschaliges Hyperboloid zweischaliges Hyperboloid
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Der englische Wikipedia-Artikel zum Stichwort „hyperboloid“ zeigt sehr schön die dynamische Ver-
wandlung eines Zylinders über ein Hyperboloid in einen Doppelkegel und wieder zurück.

Flächen im Raum, welche durch eine Gleichung zweiten Grades in drei Unbekannten beschrieben
werden können, heissen Quadriken. Ganz allgemein ist der Schnitt einer solchen Quadrik mit einer
Ebene ein „Kegelschnitt“. Die Ebenengleichung erlaubt es ja, eine Variable durch die beiden andern
auszudrücken, und so entsteht eine quadratische Gleichung mit zwei Unbekannten. Und von diesen
zeigen wir in dieser Arbeit, dass ihre Lösungsmengen immer einem „Kegelschnitt“ entsprechen.

Mit „Kegelschnitt“ ist dabei eigentlich eine 2d-Quadrik gemeint. Wenn ein ebener Schnitt durch
eine 3d-Quadrik gelegt wird, entsteht immer eine 2d-Quadrik. Eine ganze Ansammlung solcher
Quadriken im dreidimensionalen euklidischen Raum zeigt das folgende Bild. Es ist wie die anderen
Bilder in diesem Abschnitt der Internet-Enzyklopädie „wikipedia“ entnommen.

Alle Kegelschnitte sind ebene Quadriken, aber nicht alle ebenen Quadriken sind Kegelschnitte!

Literaturhinweise

[1] http://demonstrations.wolfram.com/ConnectingSkewAxlesWithHyperboloidalGears/

[2] Gubler Martin und Hepp Alfred, Skriptum „LinAlg_06.pdf “, Version 1.1 vom März 2015
Download von www.physastromath.ch/uploads/myPdfs/LinAlg/LinAlg_06.pdf

[3] Bronstein et al., „Taschenbuch der Mathematik“, Verlag Europa-Lehrmittel, 9.Auflage 2013
ISBN 978-3-8085-5671-9

[4] Stöcker Horst, „Taschenbuch mathematischer Formeln und moderner Verfahren“,
Verlag Harry Deutsch, 3. Auflage 1995, ISBN 3-8171-1461-3
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2 Die Definitionen

Wir untersuchen also Gleichungen vom Typ

A · x2 + 2 · B · x · y + C · y2 + 2 ·D · x + 2 · E · y + F = 0 (1)

wobei (A,B, C) "= (0, 0, 0) gelten soll. Diese Gleichung lässt sich auch in Matrix-Form schreiben:

(
x y 1

)
·




A B D
B C E
D E F



 ·




x
y
1



 = 0 (2)

Die Untermatrix
(
A B
B C

)
enthält die Koeffizienten der quadratischen Terme. Sie ist symmetrisch

und besitzt daher zwei Eigenwerte λ1 und λ2 mit senkrecht zueinander stehenden Eigenvektoren
(siehe [2]). Die Eigenvektoren liefern schon die Richtungen der Symmetrieachsen oder der Leitge-
raden der zugehörigen Kegelschnitte.

Für die Formulierung von Ergebnissen, die für alle Kegelschnitte gelten, ist es wichtig, die Zuordnung
von λ1 und λ2 sorgfältig vorzunehmen. Nur dann erhält man die beiden hübschen Resultate, die für
alle „nicht-entarteten“ Kegelschnitte gelten und die ich in der Literatur bisher noch nicht gesehen
habe:

Exzentrizität ε =

√

1−
λ2
λ1

Quermass p =

√
−DET
(λ1)3

Wir verwenden die folgenden Definitionen:

• DET :=

∣∣∣∣∣∣

A B D
B C E
D E F

∣∣∣∣∣∣
= A · C · F + 2 · B ·D · E − C ·D2 − A · E2 − F · B2

• det :=
∣∣∣∣
A B
B C

∣∣∣∣ = A · C − B
2

• spur := A+ C

• k := −signum(DET)

• λ1 := 0.5 ·
(
A+ C + k ·

√
(A− C)2 + 4 · B2

)

λ2 := 0.5 ·
(
A+ C − k ·

√
(A− C)2 + 4 · B2

)

• diff := k ·
√
(A− C)2 + 4 · B2

Der Wert von k wird nicht benötigt im Falle von DET = 0.
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Diese Grössen werden oft „Invarianten“ der Gleichung (1) genannt, da Rotationen und Translationen
des Koordinatensystems ihren Wert nicht ändern.

Für dieselbe Lösungskurve können aber die Werte dieser Grössen stark variieren. Die Gleichung (1)
kann ja mit einem beliebigen von Null verschiedenen Faktor multipliziert werden, ohne dass sich die
Lösungsmenge ändert.

Es gelten offensichtlich die folgenden Zusammenhänge:

• det = λ1 · λ2

• spur = λ1 + λ2

• diff = λ1 − λ2

• λ1 =
1
2 · (spur+ diff)

• λ2 =
1
2 · (spur− diff)

Die Eigenvektoren #v1 und #v2 zu den Eigenwerten λ1 und λ2 stehen senkrecht aufeinander. Sie
lassen sich (siehe [2]) folgendermassen ausdrücken:

#v1 = 2 ·
(
A− λ2
B

)
=

(
2 · A− spur+ diff

2 · B

)
=

(
A− C + diff
2 · B

)

#v2 = 2 ·
(
A− λ1
B

)
=

(
2 · A− spur− diff

2 · B

)
=

(
A− C − diff
2 · B

)

Wir möchten noch für zwei weitere häufig auftretende Terme eine Abkürzung einführen. Diese
Terme entstehen, wenn wir die Determinante DET nach der letzten Spalte entwickeln:

DET =

∣∣∣∣∣∣

A B D
B C E
D E F

∣∣∣∣∣∣
= D ·

∣∣∣∣
B C
D E

∣∣∣∣− E ·
∣∣∣∣
A B
D E

∣∣∣∣+ F ·
∣∣∣∣
A B
B C

∣∣∣∣

= D · (B · E − C ·D)− E · (A · E − B ·D) + F · (A · C − B2)

= D · h1 + E · h2 + F · det

Diese beiden Terme h1 = B ·E −C ·D und h2 = B ·D−A ·E sind aber keine „Invarianten“ der
Kurve, Rotationen des Koordinatensystems ändern ihren Wert.

Das Ziel dieser Untersuchung besteht nun darin, die Lösungsmenge von (1) in allen Fällen durch
unsere „Invarianten“ zu beschreiben und alle gewünschten Angaben zur Lösungskurve zu machen.
Insbesondere sollen sofort berechnet werden:

• Brennpunkte, Scheitelpunkte und „Leitpunkte“

• Hauptachsen, Nebenachsen, Leitgeraden und Asymptoten

• die lineare und die numerische Exzentrizität

• das Quermass p sowie die Halbachsen a und b

Dass die hergeleiteten Ergebnisse korrekt sind, lässt sich graphisch-interaktiv prüfen. Im Abschnitt
8 dieser Arbeit werden zwei GeoGebra-Dateien vorgestellt, welche erlauben, beliebige Parameter-
werte für die Gleichung (1) einzustellen und den erzeugten Kegelschnitt und die dazu berechneten
Scheitelpunkte usw. anzuschauen.
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3 Die Resultate

Bei den Rechnungen zeigt es sich, dass man 15 Fälle unterscheiden kann. Diese 15 Fälle sind in
den Tabellen 9.1 und 9.2 des Abschnittes 9 in der letzten Spalte numeriert.

In diesem Kapitel werden die detaillierten Ergebnisse für alle 15 Fälle dargestellt. Die Beweise dazu
folgen in den nächsten Kapiteln. Wie schon in der Einleitung gesagt, entsprechen nicht alle 15
Fälle einem Kegelschnitt im Sinne der Geometrie. Zudem zeigt sich, dass gewisse Fälle gar nicht
auftreten können, wenn die Koeffizienten A, B und C in (1) nicht alle null sind.

Fall 1: Ein Kreis

Die Kurve ist äquivalent zu (x ′)2 + (y ′)2 = r2

Es gilt A = C = λ1 = λ2, B = 0, diff = 0, spur = 2 · A = 2 · C

Es ist r2 = p2 =
−DET
(λ1)3

=
−DET
A3

Für den Mittelpunkt M = (u/v) des Kreises gilt

M = (u/v) =

(
h1
det

h2
det

)
=

(
−D
A

−E
A

)

Symmetrieachsen gibt es viele, Scheitelpunkte und Brennpunkte entfallen.

Es ist ε =

√

1−
λ2
λ1
=

√
1−
A

A
=
√
1− 1 = 0

Die Rücktransformation erfolgt durch
(
x
y

)
=

(
x ′ + u
y ′ + v

)
. Es könnte zuerst noch eine beliebige

Rotation um M appliziert werden.

Der Kreis lässt sich als Kegelschnitt, als Zylinderschnitt und als Kugelschnitt realisieren.

Fall 2: Eine Ellipse

Die Kurve ist kongruent zu
(
x ′

a

)2
+

(
y ′

b

)2
= 1 mit a2 > b2.

Symmetriezentrum der Ellipse ist

M = (u/v) =

(
h1
det

h2
det

)
=

(
B · E − C ·D
A · C − B2

B ·D − A · E
A · C − B2

)

Es ist a2 =
−DET
λ2 · det

> b2 =
−DET
λ1 · det

> 0, c2 = a2 − b2 =
−DET · diff

det2

ε =

√

1−
λ2
λ1

; p =

√
−DET
(λ1)3
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Für die Rücktransformation gilt
(
x
y

)
=

(
d e
−e d

)
·
(
x ′

y ′

)
+

(
u
v

)

wobei für

• B "= 0 d =
B√

(A− λ2)2 + B2
e =

λ2 − A√
(A− λ2)2 + B2

• B = 0 d =

{
0 falls DET · (A− C) > 0
1 sonst e = 1− d

Die Brennpunkte der Ellipse sind

(u + d · c / v − e · c) sowie (u − d · c / v + e · c)

Die Hauptsymmetrieachse läuft durch M und die beiden Brennpunkte, ein Richtungsvektor ist(
d
−e

)
. Die Nebensymmetrieachse hat demnach den Richtungsvektor

(
e
d

)
.

Die Leitgeraden sind parallel zur Nebensymmetrieachse und sie laufen durch die Leitpunkte, welche
mit obiger Rücktransformation aus L′ =

(
±
a

ε
0
)

erhalten werden.

Die Ellipse lässt sich als Kegelschnitt und als Zylinderschnitt realisieren.

Fall 3: Dieser Fall kann nicht auftreten.

Fall 4: Die Lösungsmenge ist leer

Die Gleichung (1) ist äquivalent zu
(
x ′

a

)2
+

(
y ′

b

)2
= −1.

Die Lösungsmenge ist offensichtlich leer. Ein einfaches Beispiel dazu haben wir mit

x2 + 2 · y2 + 1 = 0

Es ist DET = 2, det = 2, spur = 3 und somit DET · spur > 0.

Dieser Fall lässt sich weder als Kegelschnitt noch als Zylinderschnitt realisieren. Er tritt zum Beispiel
auf beim Schnitt einer Ebene mit einer Kugel oder einem Ellipsoid.

Fall 5: Eine Parabel

Die Kurve (1) ist kongruent zu y ′ = a · (x ′)2 mit a > 0.

Es gilt λ1 = A+ C und λ2 = 0, und somit haben wir auch in diesem Fall

ε =

√

1−
λ2
λ1
=

√

1−
0

λ1
= 1
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Das Quermass der Parabel ist gegeben durch

p =

√
−DET
spur3

=

√
−DET
(λ1)3

=

√
(h1)2 + (h2)2

(A+ C)2

Für a ergibt sich daraus wegen p =
1

2 · a

a =
1

2
·
√

spur3

−DET
=
1

2
·
√
(λ1)3

−DET
=
1

2
·

(A+ C)2√
(h1)2 + (h2)2

Für die Rücktransformation der Parabel y ′ = a · (x ′)2 gilt
(
x
y

)
=

(
d e
−e d

)
·
(
x ′

y ′

)
+

(
u
v

)

wo S = (u/v) der Scheitelpunkt der Parabel ist und die Werte von d und e folgendermassen
gegeben sind:

d =
h2√

(h1)2 + (h2)2
, e =

h1√
(h1)2 + (h2)2

Die Werte von u und v erhalten wir über D′ und E′ wie folgt:
(
u
v

)
=

(
d e
−e d

)
·
(
u′

v ′

)

mit u′ =
−D′

λ1
und v ′ =

D′2

2 · E′ · λ1
−
F

2 · E′ und D′ = d ·D − e · E , E′ = e ·D + d · E

Die resultierenden Terme für u und v , ausgedrückt allein durch die Parameter A,B, C,D,E, F sind
ziemlich umfangreich . . .

Der Vektor
#   »
SF vom Scheitelpunkt S zum Brennpunkt F ist gegeben durch

#   »
SF =

(
r
s

)
=

1

2 · (A+ C)2 ·
(
B · E − C ·D
B ·D − A · E

)
=

1

2 · spur2
·
(
h1
h2

)

Somit gilt für den Brennpunkt F

F = (u + r / v + s)

und entsprechend für den Leitpunkt L

L = (u − r / v − s)

Die Hauptsymmetrieachse hat die Gleichung

h1 · (y − v) = h2 · (x − u)

Für die Leitgerade gilt

h2 · (y − v + s) = −h1 · (x − u + r)

Die Parabel lässt sich als Kegelschnitt realisieren.
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Die Fälle 6 und 7 können nicht auftreten.

Fälle 8, 9 und 10: Eine Hyperbel

Die Kurve (1) ist deckungsgleich mit
(
x ′

a

)2
−

(
y ′

b

)2
= 1

mit a2 =
−DET
λ2 · det

=
−DET
λ1 · (λ2)2

> 0, b2 =
DET
λ1 · det

=
DET

(λ1)2 · λ2
> 0

c2 = a2 + b2 =
−DET
λ1 · λ2

·
(
1

λ2
−
1

λ1

)
=
−DET · diff

det2
(wie bei der Ellipse!)

Es ist ε =

√
c2

a2
=

√
a2 + b2

a2
=

√
1 +
b2

a2
=

√
1−
λ2
λ1

(wie bei der Ellipse)

Der Mittelpunkt M der Hyperbel, also der Schnittpunkt der Asymptoten und der Symmetrieachsen,
bestimmt sich ebenfalls wie bei der Ellipse:

M = (u/v) =

(
h1
det

h2
det

)
=

(
B · E − C ·D
A · C − B2

B ·D − A · E
A · C − B2

)

Das Quermass p wird ebenfalls wie bei der Ellipse berechnet:

p =
b2

a
=

√
−DET
(λ1)3

Für die Rücktransformation gelten ebenfalls dieselben Formeln wie bei der Ellipse.

Die Hauptsymmetrieachse durch die beiden Brennpunkte und M hat die Gleichung

d · (y − v) = −e · (x − u)

Die Nebensymmetrieachse, welche die beiden Hyperbeläste aufeinander abbildet, hat die Gleichung

e · (y − v) = d · (x − u)

Auch die Leitpunkte und die Leitgeraden werden genau wie bei den Ellipsen berechnet.

Hyperbeln entstehen als Kegelschnitte oder zum Beispiel als Schnitte von Hyperboloiden.
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Spezialfall 9: Eine rechtwinklige Hyperbel

Wenn gilt spur = A+ C = 0 dann ist A = −C und λ1 = −λ2.

Die Kurve ist deckungsgleich mit (x ′)2 − (y ′)2 = a2

mit a2 =
−DET
λ2 · det

=
−DET
λ1 · (λ2)2

=
−DET
(λ1)3

Es gilt c2 = a2 + a2 = 2 · a2, ε =

√
c2

a2
=

√
2 · a2
a2
=
√
2

Die beiden Asymptoten stehen senkrecht aufeinander. Für den Mittelpunkt, die Symmetrieachsen
usw. entnehme man die Terme aus dem allgemeinen Fall 8 bis 10.

Die obige Gleichung für x ′ und y ′ kann durch eine zusätzliche Drehung um 45◦ umgeformt werden
in

x ′′ · y ′′ =
1

2
· a2

Asymptoten sind dann die beiden Koordinatenachsen.

Fall 11: Die Lösungsmenge enthält nur einen Punkt

Die Untersuchungen führen hier auf die zu (1) äquivalente Gleichung

λ1 · (x ′)2 + λ2 · (y ′)2 = 0

Wegen det > 0 haben beide Eigenwerte dasselbe Vorzeichen, die einzige Lösung von (1) ist dann

M = (u/v) =

(
h1
det

h2
det

)

Dieser Fall kann als Kegelschnitt oder als Kugelschnitt realisiert werden.

Fall 12: Ein Paar paralleler Geraden

In den Fällen 12, 13 und 14 ist die Kurve (1) kongruent zu

(x ′)2 + 2 ·D · (x ′) + A · F = 0 falls A "= 0

(x ′)2 + 2 · E · (x ′) + C · F = 0 falls C "= 0

Diese quadratischen Gleichungen haben zwei, eine oder keine Lösung für x ′, je nach dem Vorzeichen
der Diskriminanten

4 · (D2 − A · F ) falls A "= 0

4 · (E2 − C · F ) falls C "= 0
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Ist die Diskriminante positiv (Fall 12), so gibt es die folgenden beiden Lösungen für x ′:

x ′ = −D ±
√
D2 − A · F falls A "= 0

x ′ = −E ±
√
E2 − C · F falls C "= 0

Da die Werte von y ′ beliebig sind, entsprechen diese beiden Lösungen für x ′ einem Paar von
Geraden, die parallel sind zur y ′-Achse.

Für die Lösungen von (1) müssen diese beiden Geraden noch mit der folgenden Rücktransformation
an den richtigen Platz geschickt werden:

(
x
y

)
=

1

A2 + B2
·
(
A −B
B A

)
·
(
x ′

y ′

)
falls A "= 0

(
x
y

)
=

1

C2 + B2
·
(
B −C
C B

)
·
(
x ′

y ′

)
falls C "= 0

Die Fälle 12, 13 und 14 können als Schnitt einer Ebene und eines Zylinders realisiert werden.

Fall 13: Eine Gerade

Die Situation ist dieselbe wie im Fall 12, nur ist jetzt der Wert der Diskriminanten null. Es gibt nur
eine Lösung für x ′, nämlich

x ′ = −D falls A "= 0

x ′ = −E falls C "= 0

Die entsprechende Gerade für (x ′/y ′) muss noch mit der passenden Rücktransformation von Fall
12 behandelt werden.

Fall 14: Die leere Menge

Wir sind immer noch in der Situation von Fall 12, nur ist jetzt die Diskriminante negativ. Es gibt
keine Lösung (x ′/y ′), und entsprechend hat auch (1) keine Lösungen.

Fall 15: Zwei einander schneidende Geraden

Hier haben wir nochmals einen echten Kegelschnitt: Statt der beiden Hyperbeläste schneidet die
Ebene zwei Mantellinien aus dem Doppelkegel, weil sie durch dessen Spitze verläuft.

Die Hyperbelgleichung reduziert sich zu

(x ′)2

a2
−
(y ′)2

b2
= 0 ⇐⇒ y ′ = ±

√
b2

a2
· x ′ = ±

√
−λ2
λ1
· x ′

Dieses Geradenpaar mit Schnittpunkt (0/0) muss noch mit der Rücktransformation der Ellipse
(siehe Fall 2) auf die Lösung von (1) abgebildet werden. Wir erhalten dann ein Geradenpaar mit
dem Schnittpunkt M = (u/v).
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4 Zur Korrektheit der Fallunterscheidungen

Wir zeigen in diesem Abschnit, dass die Fallunterscheidungen, wie sie in den Tabellen 9.1 und 9.2
auftreten, korrekt und vollständig sind. Wir gehen dazu von der Gleichung (2) aus:

(
x y 1

)
·




A B D
B C E
D E F



 ·




x
y
1



 = 0 (2)

oder, mit den entsprechenden Abkürzungen,

XT ·M ·X = 0 (3)

Die symmetrische Untermatrix
(
A B
B C

)
besitzt zwei senkrechte Eigenvektoren mit den zugehörigen

Eigenwerten λ1 und λ2. Die Untermatrix ist daher ähnlich zur Diagonalmatrix mit diesen beiden
Eigenwerten auf der Hauptdiagonalen.

Es gibt sogar eine Rotation mit
(
d −e
e d

)
·
(
A B
B C

)
·
(
d e
−e d

)
=

(
λ1 0
0 λ2

)
· (4)

Setzen wir

Q =




d −e 0
e d 0
0 0 1





so folgt aus (3)

XT ·Q−1 ·Q ·M ·Q−1 ·Q ·X = 0

und daraus wegen Q−1 = QT

(Q ·X)T · (Q ·M ·Q−1) · (Q ·X) = 0 (5)

Mit

X ′ = Q ·X =




d · x − e · y
e · x + d · y

1



 =




x ′

y ′

1





und

M ′ = Q ·M ·Q−1 =




λ1 0 D′

0 λ2 E′

D′ E′ F





wird (5) zu

X ′
T ·M ′ ·X ′ = 0
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oder

(
x ′ y ′ 1

)
·




λ1 0 D′

0 λ2 E′

D′ E′ F



 ·




x ′

y ′

1



 = 0 (6)

Ausmultipliziert liefert das

λ1 · (x ′)2 + 2 ·D′ · x ′ + λ2 · (y ′)2 + 2 · E′ · y ′ + F = 0 (7)

Die Rotation hat das gemischte Glied 2 · B · x · y eliminiert.

Dabei gilt det = λ1 · λ2 = A · C − B2

spur = λ1 + λ2 = A+ C

DET = A · C · F + 2 · B ·D · E − A · E2 − C ·D2 − F · B2

aber auch DET = λ1 · λ2 · F − λ2 · (D′)2 − λ1 · (E′)2

und DET = D · h1 + E · h2 + F · det

Die Matrizen M und M ′ = Q ·M ·Q−1 haben ja dieselbe Determinate. Die weiteren Darstellungen
von DET werden noch von grossem Nutzen sein.

Wir betrachten zuerst den parabolischen Fall mit det = 0.

Wegen det = λ1 · λ2 muss einer der Eigenwerte null sein. Beide können nicht null sein, da wir
A = B = C = 0 ausgeschlossen haben.

a) Es sei zuerst zusätzlich DET "= 0. Wegen

DET = λ1 · λ2 · F − λ2 · (D′)2 − λ1 · (E′)2 = −λ2 · (D′)2 − λ1 · (E′)2

gilt dann

spur = λ1 und E′ "= 0 falls λ2 = 0

spur = λ2 und D′ "= 0 falls λ1 = 0

In beiden Fällen hat die spur das entgegengesetzte Vorzeichen von DET. Es kann somit nur
der Fall 5 auftreten, die Fälle 6 und 7 sind nicht möglich.

Die spur hat somit auch dasselbe Vorzeichen wie k nach unseren Definitionen auf der Seite
4. Daraus ergibt sich, dass im Fall det = 0 und DET "= 0 immer gilt

spur = λ1 = A+ C "= 0 und λ2 = 0

Es ist also in diesem Fall

DET = −λ1 · (E′)2

b) Nun sei neben det = 0 auch noch DET = 0. Im Abschnitt 5 zeigen wir, dass in diesem Fall
(1) äquivalent ist zu

(x ′)2 + 2 ·D · x ′ + A · F = 0 falls A "= 0

(x ′)2 + 2 · E · x ′ + C · F = 0 falls C "= 0

Diese quadratischen Gleichungen für x ′ haben je nach dem Wert der Diskriminanten zwei,
eine oder keine Lösung. So entstehen die Fälle 12, 13 und 14.

Alle Details im parabolischen Fall werden im Abschnitt 5 ausgearbeitet.
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In der elliptischen und der hyperbolischen Situation können wir die Gleichung (7) weiter verein-
fachen. Wegen det = λ1 · λ2 "= 0 folgt λ1 "= 0 und λ2 "= 0. Die folgende Umformung ist daher
gestattet:

λ1

(
x ′ +

D′

λ1

)2
+ λ2

(
y ′ +

E′

λ2

)2
= −F +

(D′)2

λ1
+
(E′)2

λ2

Wir setzen

x ′′ = x ′ +
D′

λ1
und y ′′ = y ′ +

E′

λ2

und erhalten

λ1 · (x ′′)2 + λ2 · (y ′′)2 =
−F · λ1 · λ2 + (D′)2 · λ2 + (E′)2 · λ1

λ1 · λ2

also

λ1 · (x ′′)2 + λ2 · (y ′′)2 =
−DET

det
(8)

Die Lösungen von (8) gehen durch eine Rotation und eine Translation aus den Lösungen von (1)
hervor, die Lösungskurven sind also kongruent.

Der elliptische Fall liegt vor, wenn λ1 und λ2 dasselbe Vorzeichen haben, also wenn gilt λ1 · λ2 =
det > 0.

c) Hat −DET dasselbe Vorzeichen wie λ1 oder λ2 oder die spur, so stellt (8) die Gleichung einer
Ellipse in Hauptachsenlage dar, wir haben den Fall 1 oder 2.

Der Fall 3 kann nicht auftreten, da die spur nicht null sein kann, wenn λ1 und λ2 dasselbe
Vorzeichen haben!

d) Hat DET das „falsche“ Vorzeichen, also dasselbe wie λ1 oder λ2, dann hat die Gleichung (8)
keine Lösungen und wir sind im Fall 4.

e) Ist DET aber null, so ist die einzige Lösung von (8) der Punkt (x ′′/y ′′) = (0/0) und wir sind
im Fall 11.

Im hyperbolischen Fall haben λ1 und λ2 unterschiedliche Vorzeichen. Dann ist λ1 · λ2 = det < 0.
Die Gleichung (8) hat dann immer Lösungen.

f) Ist DET "= 0, so besteht die Lösungsmenge aus einem Paar von Hyperbelästen, wir haben die
Fälle 8, 9 und 10.

g) Ist DET = 0, so reduziert sich (8) auf

λ1 · (x ′′)2 = −λ2 · (y ′′)2 (9)

wobei ja λ1 und λ2 unterschiedliche Vorzeichen haben. Lösungsmenge von (9) ist das Paar
von Geraden

y ′′ = ±
√
λ1
−λ2

· x ′′

die sich im Nullpunkt schneiden. Das ist der Fall 15.
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5 Die Details im parabolischen Fall

Wir sind also im Fall von det = 0. Wir studieren zuerst den „nichtentarteten“ Fall mit DET "= 0.
Dann gilt

λ1 = A+ C = spur "= 0 und λ2 = 0

Die Gleichung (7) reduziert sich zu

λ1 · (x ′)2 + 2 ·D′ · x ′ + 2 · E′ · y ′ + F = 0 (10)

Wegen DET = −λ1 · (E′)2 "= 0 gilt auch E′ "= 0 und wir können (10) umformen zu

λ1 ·
(
x ′ +

D′

λ1

)2
= −2 · E′ ·

(
y ′ −

(D′)2

2 · E′ · λ1
+
F

2 · E′

)

oder

a · (x ′ − u′)2 = (y ′ − v ′) (11)

oder

a · (x ′′)2 = y ′′ (12)

mit den folgenden Variablendefinitionen:

a =
λ1
−2 · E′ =

A+ C

−2 · E′ (13.1)

u′ =
−D′

λ1
=
−D′

A+ C
(13.2)

v ′ =
(D′)2

2 · E′ · λ1
−
F

2 · E′ =
(
(D′)2

A+ C
− F

)
(2 · E′) (13.3)

Wir müssen also D′ und E′ berechnen, wozu wir die Parameter d und e der Rotation benötigen.
Diese werden leider durch die Gleichung

(
d −e
e d

)
·
(
A B
B C

)
=

(
A+ C 0
0 0

)
·
(
d −e
e d

)
(14)

nicht eindeutig bestimmt.

Immerhin liefert (14) die Resultate

d2 =
A

A+ C
, e2 =

C

A+ C
und e · d =

−B
A+ C

(15)

Die Berechnung von

M ′ = Q ·M ·Q−1 =




λ1 0 D′

0 λ2 E′

D′ E′ F




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liefert weiter

D′ = d ·D − e · E (16.1)

E′ = e ·D + d · E (16.2)

Damit berechnen wir im folgenden den Vektor
#   »
SF , der vom Scheitelpunkt der Parabel zum Brenn-

punkt führt. Aus diesem Vektor ergeben sich dann die Werte für d und e.

(1) wird durch eine Drehung um den Nullpunkt in (11) übergeführt, eine Translation liefert an-
schliessend die rote Kurve (12):

x

y

S′′ = (0/0)

F ′′

(12)

ϕ

S′ = (u′/v ′)

F ′

(11)

S = (u/v)
F

(1)

Die Rücktransformation, welche die rote Parabel für (x ′′/y ′′) wieder auf die Lösung von (1) in
(x/y) abbildet, können wir schreiben als

(
x
y

)
=

(
d e
−e d

)
·
(
x ′′

y ′′

)
+

(
u
v

)
(17)

wo S = (u/v) der noch zu bestimmende Scheitelpunkt der Parabel (1) ist.

Nun gilt allgemein
#         »

S′′F ′′ =
#      »

S′F ′ =

(
0
1

4 · a

)

Dieser Vektor wird von der Rotation in (17) auf den Vektor
#   »
SF abgebildet. Mithilfe von (13.1),

(15) und (16.2) lässt sich erstaunlicherweise der Vektor
#   »
SF berechnen, obwohl wir die Werte von

a, d und e noch nicht kennen:
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#   »
SF =

(
d e
−e d

)
·
(
0
1
4·a

)
=
! 1

2 · (A+ C)2 ·
(
B · E − C ·D
B ·D − A · E

)

also

#   »
SF =

def
(
r
s

)
=

1

2 · spur2

(
h1
h2

)
(18)

Gilt DET "= 0, so kann dieser Vektor nicht null sein wegen

DET = D · h1 + E · h2 + F · det = D · h1 + E · h2

Aus diesem Vektor
#   »
SF erhalten wir jetzt die Werte für d und e:

d = cos(ϕ) =
h2√

(h1)2 + (h2)2
(19.1)

e = sin(ϕ) =
h1√

(h1)2 + (h2)2
(19.2)

d und e werden so definiert, dass der Vektor
(
0
1

)
auf einen Vektor der Richtung

#   »
SF abgebildet

wird. Die Kurven (11) und (12) sind also immer nach oben geöffnet, das Vorzeichen von a in (13.1)
ist immer positiv. e und d sorgen in (16.2) dafür, dass E′ das passende Vorzeichen hat.

Damit sind mit (16) auch E′ und D′ bekannt, woraus wir wiederum mit (13) die Werte von a, u′

und v ′ erhalten. Aus u′ und v ′ erhalten wir schliesslich die Koordinaten u und v des Scheitelpunktes
S der Parabel.

(
u
v

)
=

(
d e
−e d

)
·
(
u′

v ′

)
(20)

Mit (18) erhalten wir daraus die Koordinaten des Brennpunktes F und des „Leitpunktes“ L:

F = (u + r/v + r) (21.1)

L = (u − r/v − r) (21.2)

Die Symmetrieachse der Parabel wird durch die Gleichungen

e · (y − v) = d · (x − u) (22.1)

oder

h1 · (y − v) = h2 · (x − u) (22.2)

beschrieben, da ja
#   »
SF ein Richtungsvektor dieser Symmetrieachse ist. Die Leitgerade steht darauf

senkrecht und geht durch den Punkt L:

e · (x − (u − r)) = −d · (y − (v − s)) (23.1)

oder

−h1 · (x − u + r) = h2 · (y − v + s) (23.2)
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Damit sind alle geometrischen Bestimmungsstücke der Parabel bekannt und können vom GeoGebra-
Programm „parabol.ggb“ berechnet und gezeichnet werden.

Nun wollen wir noch schöne Formeln für die algebraischen Kennzahlen a und p der Parabel herleiten.

Aus (13.1) und (16.2) erhalten wir

a =
λ1
−2 · E′ =

(A+ C) ·
√
(h1)2 + (h2)2

−2 · (h1 ·D + h2 · E)
(24.1)

und daraus

p =
1

2 · a =
∣∣∣∣
E′

λ1

∣∣∣∣ =

√
(E′)2

(λ1)2
=

√
λ1 · (E′)2
(λ1)3

=

√
−DET
(λ1)3

(25.1)

Diese Formel hat den Vorteil, dass sie für alle nichtentarteten Kegelschnitte gilt.

Andere schöne Darstellungen erhalten wir, wenn wir die folgende Identität ausnützen:

−DET · (A+ C) = (h1)2 + (h2)2 (26)

Diese Gleichung gilt nur im parabolischen Fall, also wenn det = 0 gilt. Die Korrektheit von (26)
ergibt sich durch einfaches Nachrechnen aus der Darstellung von DET gemäss Seite 5:

DET = D · h1 + E · h2 + F · det =! D · h1 + E · h2

Aus (25.1) erhalten wir mit (26) den Ausdruck

p =

√
−DET · (A+ C)
(λ1)3 · (A+ C)

=

√
(h1)2 + (h2)2

(A+ C)4
=

√
(h1)2 + (h2)2

(A+ C)2
(25.2)

Für a erhalten wir daraus

a =
1

2 · p =
(A+ C)2

2 ·
√
(h1)2 + (h2)2

(24.2)

Unsere Formeln für p und a sind denjenigen in [3] und [4] überlegen, weil sie die Voraussetzung
A "= 0 nicht nötig haben. Sie gelten in allen Fällen.

Die letzten beiden Formeln hätten wir auch direkt aus (18) ableiten können. Der Betrag des Vektors
#   »
SF ist ja bei allen Parabeln gleich

1

2
· p oder

1

4 · a .

Nun gilt es noch den „entarteten“ Fall mit DET = 0 zu studieren.
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Es sei also DET = 0 und det = 0.

(26) zeigt, dass gilt

DET = 0 ⇐⇒ (h1 = 0 und h2 = 0) ⇐⇒ (BE = CD und BD = AE)

Leider muss man hier zwei Fälle unterscheiden, die sich aber komplett analog behandeln lassen.

a) Es sei A "= 0 (es ist ja mindestens eine der Zahlen A und C von null verschieden).

Wir multiplizieren (1) mit A und erhalten

A2 · x2 + 2 · A · B · x · y + A · C · y2 + 2 · A ·D · x + 2 · A · E · y + A · F = 0

Mit A · C = B2 und A · E = B ·D ist das äquivalent zu

(A · x + B · y)2 + 2 ·D · (A · x + B · y) + A · F = 0

oder

(x ′)2 + 2 ·D · x ′ + A · F = 0 (27.1)

Die Koordinatentransformation ist eine Drehstreckung:
(
x ′

y ′

)
=

(
A B
−B A

)
·
(
x
y

)

Die inverse Abbildung existiert, sie lautet
(
x
y

)
=

1

A2 + B2
·
(
A −B
B A

)
·
(
x ′

y ′

)
(28.1)

Die Lösungen von (27.1) hängen von der Diskriminanten ab:

4 ·D2 − 4 · A · F = 4 · (D2 − A · F )

Damit ist für den Fall A "= 0 das Unterscheidungskriterium der Fälle 12, 13 und 14 bewiesen.

Jede Lösung von (27.1) für x ′ liefert als Lösungsmenge für (x ′/y ′) eine Gerade mit festem
x ′-Wert, welche parallel liegt zur y ′-Achse. Diese Geraden sind dann für die Lösung von (1)
noch mit der Abbildung (28.1) an den richtigen Ort zu rücken.

Der Fall 14 liegt vor, wenn gilt D2 − A · F < 0. (27.1) hat dann keine Lösungen, und die
Lösungsmenge von (1) ist somit auch leer.

Im Fall 13 gilt D2 −A · F = 0. Einzige Lösung von (27.1) ist dann x ′ = −D. Bildet man die
beiden Punkte (−D/0) und (−D/1) mit (28.1) ab, so hat man zwei Punkte der Geraden,
welche die Lösungsmenge von (1) bildet.

Im Fall 12 mit D2 − A · F > 0 hat die Gleichung (27.1) zwei Lösungen, nämlich

x ′ = −D ±
√
D2 − A · F

Die beiden Geraden zu diesen x ′-Werten mit beliebigen Werten von y ′ müssen wieder mit
(28.1) auf die beiden parallen Geraden abgebildet werden, welche die Lösungsmenge von (1)
darstellen.
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b) Es sei C "= 0 (wenn A = 0 gilt, ist sicher C "= 0). Dann multiplizieren wir (1) mit C und
erhalten ganz analog

(x ′)2 + 2 · E · x ′ + C · F = 0 (27.2)

Die entscheidende Diskriminante ist jetzt

4 · E2 − 4 · C · F = 4 · (E2 − C · F )

und die Rücktransformation ist gegeben durch
(
x
y

)
=

1

B2 + C2
·
(
B −C
C B

)
·
(
x ′

y ′

)
(28.2)

Damit sind die Fälle 5, 6, 7 sowie 12, 13 und 14 vollständig abgehandelt.
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6 Die Details im elliptischen Fall

Es sei also det > 0. Dann haben λ1 und λ2 dasselbe Vorzeichen, und beide Eigenwerte sind
verschieden von null.

Wir studieren zuerst den „nicht-entarteten“ Fall mit DET "= 0.

Wir starten bei der Gleichung

λ1 · (x ′′)2 + λ2 · (y ′′)2 =
−DET

det
(8)

Nach unseren Definitionen gilt |λ1| > |λ2| > 0, da k in diesem Fall dasselbe Vorzeichen hat wie
λ1, λ2 und die spur. Deshalb hat die Ellipse (8) ihre Brennpunkte auf der y -Achse. Dies wollen wir
mit einer zusätzlichen Drehung um 90◦ ändern. Statt (8) haben wir dann

λ2 · (x̂)2 + λ1 · (ŷ)2 =
−DET

det
(30)

Vergleichen wir mit der Ellipsengleichung in Mittelpunktslage

x2

a2
+
y2

b2
= 1

so erhalten wir

a2 =
−DET
λ2 · det

=
−DET
λ1 · (λ2)2

(31.1)

b2 =
−DET
λ1 · det

=
−DET
(λ1)2 · λ2

(31.2)

mit a2 > b2. Mittelpunkt der Ellipse (30) ist M ′ = (0/0), Scheitelpunkte, Symmetrieachsen,
Brennpunkte und Leitgeraden sind bekannt. Diese Bestimmungsstücke werden von der Rücktrans-
formation

(
x
y

)
=

(
d e
−e d

)
·
(
x̂
ŷ

)
+

(
u
v

)
(32)

auf die Lösung von (1) übertragen. Wir bestimmen zuerst den Mittelpunkt M = (u/v) der Lösung
von (1), also den translativen Anteil von (32).

Wir betrachten dazu die Gleichung

z =
(x̂)2

a2
+
(ŷ)2

b2
(33)

(33) definiert ein elliptisches Paraboloid als Fläche im Raum. Diese Quadrik hat ihr absolutes
Minimum in z-Richtung bei x̂ = 0 und ŷ = 0. Dort sind die beiden partiellen Ableitungen von (33)
null:
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z =
x2

a2
+
y2

b2

z = c

Dasselbe gilt auch bei der Original-Ellipse (1)! Wir setzen also die beiden partiellen Ableitungen
von (1) gleich null:

2 · A · x + 2 · B · y + 2 ·D = 0

2 · B · x + 2 · C · y + 2 · E = 0

Für den Mittelpunkt M = (u/v) muss also gelten

A · u + B · v = −D

B · u + C · v = −E
⇐⇒

(
A B
B C

)
·
(
u
v

)
=

(
−D
−E

)

Multiplikation von links mit der inversen Matrix liefert die Werte von u und v :

(
u
v

)
=

1

A · C − B2 ·
(
B · E − C ·D
B ·D − A · E

)
=
1

det
·
(
h1
h2

)
(34.1)

Die gleichen Überlegungen mit demselben Resultat gelten auch im hyperbolischen Fall. Anstelle des
Minimums der Quadrik wird dort die Lage eines Sattelpunktes bestimmt:

z =
x2

a2
−
y2

b2

z = c

Nur im Sattelpunkt des hyperbolischen Paraboloids sind die beiden partiellen Ableitungen der qua-
dratischen Form gleich null.
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Es gilt also für det "= 0 immer

M = (u/v) =

(
h1
det

h2
det

)
(34.2)

Damit ist die Translation in (32) bekannt. Wir kommen zur Bestimmung der Parameter d und e
der Rotation.

ϕ

#v1

‖

ϕ

M

‖

(
u
v

)

x

y

Wenn B nicht null ist, stehen die Symmetrieachsen der Ellipse schief zu den Koordinatenachsen und
wir können den Winkel ϕ der Rotation mithilfe des Eigenvektors #v1 bestimmen. Beim Übergang von
(8) zu (30) haben wir aber noch eine zusätzliche Drehung um 90◦ vorgenommen. Daher vertauschen
sich die Rollen von sin(ϕ) und cos(ϕ) und wir erhalten für die Matrix der Rücktransformation

d = cos(ϕ) =
B

|#v1|
=

B√
(A− λ2)2 + B2

(35.1)

e = sin(ϕ) =
λ2 − A
|#v1|

=
λ2 − A√

(A− λ2)2 + B2
(35.2)

Wenn B null ist, können die Nenner in (35) auch null werden. Dieser Fall muss daher separat
behandelt werden. Er ist aber besonders einfach, weil dann keine Rotation erforderlich ist oder aber
eine Drehung um 90◦.

Eine kleine Untersuchung zeigt, dass diese beiden Fälle durch das Vorzeichen von DET · (A − C)
unterschieden werden können:

(B = 0 und DET · (A− C) ≥ 0) =⇒ (d = 1 und e = 0) (36.1)

(B = 0 und DET · (A− C) < 0) =⇒ (d = 0 und e = 1) (36.2)
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Im GeoGebra-Programm „ellipt_hyperbol.ggb“ wird diese Unterscheidung mithilfe der Variablen g
vorgenommen.

Die Halbachsen der Ellipse sind schon in (31) bestimmt worden. Berechnen wir noch die lineare
und die numerische Exzentrizität sowie das Quermass:

Für die lineare Exzentrizität gilt

c2 = a2 − b2 =
−DET

det
·
(
1

λ2
−
1

λ1

)
=
−DET

det
·
λ1 − λ2
λ1 · λ2

=
−DET · diff

det2
(37)

Daraus ergibt sich für die numerische Exzentrizität ε

ε =

√
c2

a2
=

√√√√√√√

−DET
det

·
λ1 − λ2
λ1 · λ2

−DET
det

·
1

λ2

=

√
(λ1 − λ2) · λ2
λ1 · λ2

=

√
1−
λ2
λ1

(38)

Für das Quermass p einer Ellipse gilt p =
b2

a
, also

p2 =
b4

a2
=

DET2

(λ1)4 · (λ2)2
−DET
λ1 · (λ2)2

=
−DET
(λ1)3

Es gilt also dieselbe Formel wie bei der Parabel:

p =

√
−DET
(λ1)3

(39)

Damit können wir jetzt alle Bestimmungsstücke der Ellipse (1) aus den bekannten Werten der
kongruenten Ellipse (30) berechnen und vom GeoGebra-Programm „ellipt_hyperbol.ggb“ zeichnen
lassen.

Für die Hauptsymmetrieachse der Ellipse ergibt sich

d · (y − v) = −e · (x − u) (40)

Die Nebensymmetrieachse wird beschrieben durch

e · (y − v) = d · (x − u) (41)

Die beiden Brennpunkte sind bestimmt durch

(
d e
−e d

)
·
(
±c
0

)
+

(
u
v

)
(42)
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Genauso erhalten wir die Scheitelpunkte auf der Hauptsymmetrieachse

(
d e
−e d

)
·
(
±a
0

)
+

(
u
v

)
(43)

Für die Nebenscheitelpunkte berechnen wir

(
d e
−e d

)
·
(
0
±b

)
+

(
u
v

)
(44)

Die Leitgeraden sind parallel zur Nebensymmetrieachse, sie laufen durch die „Leitpunkte“

(
d e
−e d

)
·
(
±a/ε
0

)
+

(
u
v

)
(45)

Der „entartete“ Fall mit DET = 0 bereitet keine Schwierigkeiten. Einzige Lösung von (30) ist
dann der Punkt (0/0). Dieser Punkt wird von der Rücktransformation auf M = (u/v) abgebildet.
M = (u/v) ist dann die einzige Lösung von (1).
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7 Die Details im hyperbolischen Fall

Das meiste von dem, was wir im elliptischen Fall gefunden haben, ist auch im hyperbolischen Fall
gültig.

Ausgangspunkt ist wieder die Gleichung (30), nur haben jetzt die beiden Eigewerte λ1 und λ2
unterschiedliche Vorzeichen. Vergleichen wir (30) mit der Hyperbelgleichung in Mittelpunktslage,
also mit

x2

a2
−
y2

b2
= 1

so erhalten wir

a2 =
−DET
λ2 · det

=
−DET
λ1 · (λ2)2

(46.1)

b2 =
+DET
λ1 · det

=
DET

(λ1)2 · λ2
(46.2)

Einzig das Vorzeichen von b2 hat einen andern Wert als im elliptischen Fall. Da bei Hyperbeln
c2 = a2 + b2 gilt, behalten aber alle Rechnungen, die wir bei den Ellipsen gemacht haben, ihre
Gültigkeit. Bei Ellipsen gilt ja c2 = a2 − b2.

Unverändert gilt auch

M = (u/v) =

(
h1
det

h2
det

)

und auch die Werte von d und e für die Rotationsmatrix der Rücktransformationen können genau
gleich berechnet werden. Es gibt daher auch nur ein einziges Programm „ellipt_hyperbol.ggb“, um
die ausgezeichneten Punkte und Geraden einzuzeichnen.

Bei den Ellipsen haben wir für a2 = b2 den Spezialfall eines Kreises. Es gilt dann λ1 = λ2.

Auch bei Hyperbeln kann a2 = b2 gelten, wenn λ1 = −λ2 gilt. In diesem Spezialfall hat die Hyperbel
zwei zueinander senkrecht stehende Asymptoten. Der Fall tritt genau dann auf, wenn gilt spur = 0.
Diese Bedingung ist ja äquivalent zu λ1 = −λ2.

Die Asymptoten der Hyperbel werden in allen Fällen aus der Rücktransformation der beiden Geraden

y = ±
√
b2

a2
· x = ±

√
−λ2
λ1
· x (47)

gewonnen.

Den „entarteten“ Fall mit DET = 0 haben wir schon im Abschnitt 4 auf der Seite 16 behandelt.
Die Lösungen von (1) bestehen dann gerade aus dem Paar von Geraden, welches wir mit der
Rücktransformation aus (47) erhalten. Die beiden Geraden schneiden sich in M, man braucht daher
nur noch je einen weitern Punkt von (47) abzubilden. Die Rollen von λ1 und λ2 sind gegenüber
der Seite 16 vertauscht, weil wir neu von der Gleichung (30) ausgehen und nicht mehr von der
Gleichung (8).
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8 Visualisierung und Kontrolle mit GeoGebra

Die beiden Programme „ellipt_hyperbol.ggb“ und „parabol.ggb“ können frei von meiner Webseite
„physastromath.ch/material/mathematik/geogebra/“ heruntergeladen werden. Sie brauchen ei-
gentlich keine grossen Erläuterungen. Mittels Schiebereglern können die Parameter der quadrati-
schen Gleichung eingestellt werden und der entsprechende Kegelschnitt wird vom GeoGebra-Befehl
„Kegelschnitt“ sofort gezeichnet. Dazu werden dann die Brennpunkte, Hauptachsen, Leitgeraden
und Asymptoten etc. nach unseren Formeln berechnet und eingezeichnet. Wären die Formeln falsch,
so würden die entsprechenden Punkte und Geraden ganz quer in der Landschaft stehen (was sie
natürlich zu beginn auch gemacht haben ... ).

Die Variablennamen sind meist wie in den Abschnitten 2 bis 7 dieses Skriptums gewählt. GeoGebra
unterscheidet Gross- und Kleinschreibung, und auch die Variablennamen D’ und E’ sind erlaubt. In
wenigen Fällen weichen die Bezeichnungen dennoch von denjenigen im Skriptum ab :

p
q
quer1
quer2
eps1
eps2

der erste Eigenwert λ1
der zweite Eigenwert λ2
das Quermass p des Kegelschnitts
das Quermass p des Kegelschnitts
die numerische Exzentrizität ε
die numerische Exzentrizität ε

Einige Werte wie zum Beispiel die Exzentrizität und die spur werden zur Kontrolle auf verschiedene
Arten berechnet.

Beim Programm „parabol.ggb“ kann der Wert von C nicht eingegeben werden. C wird aus den
Werten von A und B so berechnet, dass det = A · C − B2 = 0 gilt, damit man auch sicher im
parabolischen Fall ist. Es ist also C = B2/A, weshalb für A = 0 keine Parabel angezeigt wird.

Wenn Sie den Bereich oder die Feinheit der Schritte bei den Schiebereglern A bis F ändern wollen,
brauchen Sie nur mit der rechten Maustaste darauf zu klicken. Es klappt ein Kontext-Menu auf;
wählen Sie dort den untersten Eintrag „Eigenschaften“ und Sie können alle Vorgaben abändern.

Falls Sie eine Fehlfunktion finden, bitte ich Sie, mir diese mitzuteilen via gub@stafag.ch .
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