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1 Bemerkungen zum Begriff des Kegelschnitts

Die Losungsmenge der Gleichung x? + y? = z2 ist ein Doppelkegel mit der Spitze im Nullpunkt
und der z-Achse als Rotationsachse:

Schneiden wir diesen Doppelkegel mit einer beliebigen Ebene E
E:a-x+b-y+c-z+d=0
so konnen wir zwei Falle unterscheiden: d = 0 oder d # 0.

Fall d = 0 : Die Ebene geht durch den Nullpunkt, also durch die Spitze des Doppelkegels, und als
Schnittmenge ergibt sich ein Punkt, eine Mantellinie oder ein Paar von Mantelinien, die sich im
Nullpunkt schneiden.

Fall d # 0: Die Ebene schneidet die z-Achse in Q # O oder sie ist parallel zur z-Achse. Die
Schnittkurve ist ein Kreis, eine Ellipse, eine Parabel oder eine Hyperbel.

Alle diese Kegelschnitte lassen sich als Losungsmengen einer quadratischen Gleichung mit zwel
Unbekannten beschreiben:

Ax>+2-B-x-y+C-y>+2-D-x+2-E-y+F=0

Die Umkehrung ist aber falsch: Nicht alle Lésungen einer solchen Gleichung entsprechen einem Ke-
gelschnitt! Dies ist ein erster Anlass zur Verwirrung, da oft alle Losungen einfach als Kegelschnitte
bezeichnet werden.



Betrachten wir die folgenden Beispiele:

o X>+y’=-1 Die Losungsmenge ist leer
o x?°=1 Losungsmenge ist ein Paar paralleler Geraden ( x = +1, y ist beliebig)

Diese Losungsmengen lassen sich geometrisch nicht als Kegelschnitt realisieren, und es ist auch
nicht sinnvoll, sie als ,entartete Kegelschnitte” zu bezeichnen.

Wenn wir alle Losungen geometrisch interpretieren wollen, mussen wir weitere Flachen zulassen,
die dann von einer Ebene geschnitten werden.

Betrachten wir zwei Geraden g und h im Raum, die sich unter einem spitzen Winkel schneiden.
Lassen wir h um g rotieren, so entsteht ein Doppelkegel. Die moglichen ebenen Schnitte haben
wir oben beschrieben.

Sind die beiden Geraden parallel, so entsteht bei der Rotation von h um g ein Zylinder. Schneiden
wir diesen Zylinder mit einer Ebene, so entsteht ein Kreis, eine Ellipse, zwei parallele Geraden, eine
Gerade oder die leere Menge. Damit sind fast alle Losungen abgedeckt, wenn die Gleichung wirklich
quadratisch ist, wenn also nicht A, B und C gleichzeitig null sind.

Einen einzigen Fall erreichen wir so nicht: Die Losungsmenge kann auch leer sein, wenn die De-
terminanten, die wir noch definieren werden, beide verschieden sind von null. Wir missen daher
auch noch die Kugel als Flache zulassen, die wir mit einer Ebene schneiden. Das gibt dann Kreise,
einen einzelnen Punkt oder eben die leere Menge. Anstelle der Kugeln konnten wir auch allgemeiner
Ellipsoide zulassen.

Die weiteren Kapitel dieser Arbeit werden zeigen, dass der folgende Satz gilt:

.Die Losungen einer echt quadratischen Gleichung mit zwei Unbekannten lassen sich geo-
metrisch immer als Schnitt eines Doppelkegels, eines Kreiszylinders oder einer Kugel mit
der xy-Ebene realisieren. Ist die Losungsmenge nicht leer, so lasst sie sich immer als
Kegelschnitt oder als Zylinderschnitt realisieren.”

.Kegelschnitte” sind also Kegelschnitte, Zylinderschnitte oder Kugelschnitte.

Auch die Losungen der linearen Gleichung mit zwei Unbekannten konnen wir auf dhnliche Art
generieren: Schneiden sich die beiden Geraden unter einem 90°-Winkel, so entsteht bei der Rotation
von h um g eine Ebene. Schneiden wir diese Flache im Raum mit einer weiteren Ebene, so finden
wir als Losungsmenge eine Gerade, die leere Menge oder aber die ganze Ebene.

Die letzte Moglichkeit fiir zwei komplanare Geraden besteht darin, dass sie identisch sind. Die
Rotations- ,flache” bei der Rotation von h um g ist dann die Gerade g selber, und beim Schnitt
mit einer Ebene entstehen ein Punkt, die leere Menge oder die Gerade selber.

Wie sieht die Situation aus, wenn man von zwei windschiefen Geraden ausgeht 7 Stehen die beiden
nicht gerade senkrecht zueinander so entsteht bei der Rotation von h um g ein Hyperboloid. Das
Bild auf der folgenden Seite zeigt gut, dass dieser Korper aus der Rotation einer Geraden heraus
verstanden werden kann. Wenn Sie dem Link [1] folgen, kdnnen Sie den Zwischenwinkel der Achsen
verandern und das Getriebe laufen lassen.



Auch diese Hyperboloide konnen als quadratische Gleichung mit 3 Unbekannten geschrieben werden.
Das einschalige Hyperboloid unten links ist die Flache, welche zur Gleichung

XP4y?-z2=1

gehort. Der Schnitt mit einer Ebene kann (nach einer Rotation) immer als Schnitt mit der xy-
Ebene aufgefasst werden und liefert damit eine quadratische Gleichung mit zwei Unbekannten. Als
Schnittfiguren entstehen hier Kreise, Ellipsen, Parabeln, Hyperbeln und Paare von Geraden. Punkte,
einzelne Geraden oder die leere Menge sind nicht mdglich.

einschaliges Hyperboloid zweischaliges Hyperboloid



Der englische Wikipedia-Artikel zum Stichwort ,hyperboloid” zeigt sehr schon die dynamische Ver-
wandlung eines Zylinders iiber ein Hyperboloid in einen Doppelkegel und wieder zuriick.

Flachen im Raum, welche durch eine Gleichung zweiten Grades in drei Unbekannten beschrieben
werden konnen, heissen Quadriken. Ganz allgemein ist der Schnitt einer solchen Quadrik mit einer
Ebene ein ,Kegelschnitt”. Die Ebenengleichung erlaubt es ja, eine Variable durch die beiden andern
auszudriicken, und so entsteht eine quadratische Gleichung mit zwei Unbekannten. Und von diesen
zeigen wir in dieser Arbeit, dass ihre Losungsmengen immer einem , Kegelschnitt” entsprechen.

Mit ,Kegelschnitt” ist dabei eigentlich eine 2d-Quadrik gemeint. Wenn ein ebener Schnitt durch
eine 3d-Quadrik gelegt wird, entsteht immer eine 2d-Quadrik. Eine ganze Ansammlung solcher
Quadriken im dreidimensionalen euklidischen Raum zeigt das folgende Bild. Es ist wie die anderen
Bilder in diesem Abschnitt der Internet-Enzyklopadie ,wikipedia” entnommen.

Alle Kegelschnitte sind ebene Quadriken, aber nicht alle ebenen Quadriken sind Kegelschnitte!

Literaturhinweise
[1]  http://demonstrations.wolfram.com/ConnectingSkewAxlesWithHyperboloidalGears/

[2]  Gubler Martin und Hepp Alfred, Skriptum ,LinAlg 06.pdf “, Version 1.1 vom Mdrz 2015
Download von www.physastromath.ch/uploads/myPdfs/LinAlg/LinAlg 06.pdf

[3] Bronstein et al., ,Taschenbuch der Mathematik”, Verlag Europa-Lehrmittel, 9.Auflage 2013
ISBN 978-3-8085-5671-9

[4] Stocker Horst, ,Taschenbuch mathematischer Formeln und moderner Verfahren®,
Verlag Harry Deutsch, 3. Auflage 1995, ISBN 3-8171-1461-3



2 Die Definitionen

Wir untersuchen also Gleichungen vom Typ

Ax*+2-B-x-y+C-y>+2-D-x+2-E-y+F=0 (1)

wobei (A, B, C) # (0,0, 0) gelten soll. Diese Gleichung lasst sich auch in Matrix-Form schreiben:

A B D
(x vy 1)-|B C E =0 (2)
D E F

— < X

Die Untermatrix <2 g) enthalt die Koeffizienten der quadratischen Terme. Sie ist symmetrisch

und besitzt daher zwei Eigenwerte A1 und XA> mit senkrecht zueinander stehenden Eigenvektoren
(siehe [2]). Die Eigenvektoren liefern schon die Richtungen der Symmetrieachsen oder der Leitge-
raden der zugehorigen Kegelschnitte.

Fir die Formulierung von Ergebnissen, die fiir alle Kegelschnitte gelten, ist es wichtig, die Zuordnung
von A1 und As sorgfaltig vorzunehmen. Nur dann erhdlt man die beiden hiibschen Resultate, die fiir
alle ,nicht-entarteten” Kegelschnitte gelten und die ich in der Literatur bisher noch nicht gesehen
habe:

Exzentrizitat e€=4/1— —

Quermass = ﬂ
PV w3

Wir verwenden die folgenden Definitionen:

A B D
e DET:=|B C E|=A-C-F+2-B-D-E-C-D*>-A-E°-F-B?
D E F

o spur:=A+C
e k:= —signum(DET)

o« A ::o.5.(A+C+k-\/(A—C)2+4.32)

o ::O.5-<A+C—k-\/(A—C)2+4-B2>

o diffi=k-\/(A—C)2+4-B2

Der Wert von k wird nicht benétigt im Falle von DET = 0.



Diese Grossen werden oft ,Invarianten” der Gleichung (1) genannt, da Rotationen und Translationen
des Koordinatensystems ihren Wert nicht andern.

Fiir dieselbe Losungskurve konnen aber die Werte dieser Grossen stark variieren. Die Gleichung (1)
kann ja mit einem beliebigen von Null verschiedenen Faktor multipliziert werden, ohne dass sich die
Losungsmenge andert.

Es gelten offensichtlich die folgenden Zusammenhange:

e det=XA1 N e )1 =5 - (spur+ diff)

Nl— NI

e spur=2X;+ X e X\ =5 (spur — diff)

o diff =X —Xo

Die Eigenvektoren v} und ¥» zu den Eigenwerten A1 und A, stehen senkrecht aufeinander. Sie
lassen sich (siehe [2]) folgendermassen ausdriicken:

o (A=) | (2-A—spur+diffy _ (A= C+diff
= B )~ 2.B - 2.B

oo, A—X1\  [(2-A—spur—diff\ [A—-C—diff

2= B )~ 2. B -\ 2B
Wir mochten noch fiir zwei weitere haufig auftretende Terme eine Abkirzung einfiihren. Diese
Terme entstehen, wenn wir die Determinante DET nach der letzten Spalte entwickeln:

A B D
B C A B A B
DET=|B C E:D-‘ ‘—E-‘ ‘+F-’ '
b EF D E D E B C

—D-(B-E-C-D)—E-(A-E—B-D)+F-(A-C—B?
:Dhl +Eh2 +Fdet

Diese beiden Terme hy = B-E—C-D und h, = B-D — A-E sind aber keine ,Invarianten” der
Kurve, Rotationen des Koordinatensystems andern ihren Wert.

Das Ziel dieser Untersuchung besteht nun darin, die Lésungsmenge von (1) in allen Fallen durch
unsere ,Invarianten” zu beschreiben und alle gewiinschten Angaben zur Losungskurve zu machen.
Insbesondere sollen sofort berechnet werden:

e Brennpunkte, Scheitelpunkte und ,Leitpunkte”

e Hauptachsen, Nebenachsen, Leitgeraden und Asymptoten
e die lineare und die numerische Exzentrizitat

e das Quermass p sowie die Halbachsen a und b

Dass die hergeleiteten Ergebnisse korrekt sind, lasst sich graphisch-interaktiv priifen. Im Abschnitt
8 dieser Arbeit werden zwei GeoGebra-Dateien vorgestellt, welche erlauben, beliebige Parameter-
werte fiir die Gleichung (1) einzustellen und den erzeugten Kegelschnitt und die dazu berechneten
Scheitelpunkte usw. anzuschauen.



3 Die Resultate

Bei den Rechnungen zeigt es sich, dass man 15 Falle unterscheiden kann. Diese 15 Falle sind in
den Tabellen 9.1 und 9.2 des Abschnittes 9 in der letzten Spalte numeriert.

In diesem Kapitel werden die detaillierten Ergebnisse fir alle 15 Falle dargestellt. Die Beweise dazu
folgen in den nachsten Kapiteln. Wie schon in der Einleitung gesagt, entsprechen nicht alle 15
Falle einem Kegelschnitt im Sinne der Geometrie. Zudem zeigt sich, dass gewisse Félle gar nicht
auftreten konnen, wenn die Koeffizienten A, B und C in (1) nicht alle null sind.

Fall 1: Ein Kreis
Die Kurve ist dquivalent zu (x')% + (y')? = r?

Esqilt A=C=X1 =Xy, B=0, diff=0, spur=2-A=2-C

IR OO

Fir den Mittelpunkt M = (u/v) des Kreises gilt
_ (M /2 _ —D/—E
M_(u/v)_<det det>_< Al A )

Symmetrieachsen gibt es viele, Scheitelpunkte und Brennpunkte entfallen.

A A
Esist e=4/1—-22=4/1-2=v1I-1=0
A A

/
Die Riicktransformation erfolgt durch <§> = (X tu

an v)' Es konnte zuerst noch eine beliebige

Rotation um M appliziert werden.

Der Kreis lasst sich als Kegelschnitt, als Zylinderschnitt und als Kugelschnitt realisieren.

Fall 2: Eine Ellipse

2 N\ 2
. . x' .
Die Kurve ist kongruent zu (a) + (“\[/)) =1 mit a° > b°.

Symmetriezentrum der Ellipse ist

/\/l=(u/v)=<hl hz):(B-E—c-D B-D—A-E>

det/ det A.C— B2 A.-C— B2

_DET _DET _DET - diff
Esict 22 — > _ 2_ 2 2 _
sist @ = et P T det b det?

R O
A1 P (A1)3



Fiir die Riicktransformation gilt

wobei fir

© B#O = A wr T B T A-nri B

0 falsDET-(A—-C)>0
1 sonst

e B=0 d= {
Die Brennpunkte der Ellipse sind

(u+d-c/v—e-c) sowie (u—d-c/v+e-c)
Die Hauptsymmetrieachse lauft durch M und die beiden Brennpunkte, ein Richtungsvektor ist

<_de>. Die Nebensymmetrieachse hat demnach den Richtungsvektor (Z)

Die Leitgeraden sind parallel zur Nebensymmetrieachse und sie laufen durch die Leitpunkte, welche
. . _ a
mit obiger Riicktransformation aus L' = (ig / O> erhalten werden.

Die Ellipse lasst sich als Kegelschnitt und als Zylinderschnitt realisieren.
Fall 3: Dieser Fall kann nicht auftreten.

Fall 4: Die Losungsmenge ist leer

X/ 2 y/ 2
Die Gleichung (1) ist dquivalent zu (a) + (b> =—1.

Die Losungsmenge ist offensichtlich leer. Ein einfaches Beispiel dazu haben wir mit
xX>4+2-y2+1=0

Es ist DET = 2, det = 2, spur = 3 und somit DET - spur > 0.

Dieser Fall lasst sich weder als Kegelschnitt noch als Zylinderschnitt realisieren. Er tritt zum Beispiel

auf beim Schnitt einer Ebene mit einer Kugel oder einem Ellipsoid.

Fall 5: Eine Parabel

Die Kurve (1) ist kongruent zu y’ = a- (x')? mit a > 0.

Es gilt A1 = A+ C und X» = 0, und somit haben wir auch in diesem Fall

Ao 0




Das Quermass der Parabel ist gegeben durch
_|-DET |-DET (h1)2 + (hy)?
P spur3 (A1) (A+C)2
1
Fir a ergibt sich daraus wegen p = —
/ spur3 [ (A1)3 } (A+C)?
~DET ~ -DET 2 /(h)2 + (h)?
Fiir die Riicktransformation der Parabel y' = a- (x')? gilt
x\ _(d e\ (X L (Y
y) \-e d Y v

wo S = (u/v) der Scheitelpunkt der Parabel ist und die Werte von d und e folgendermassen
gegeben sind:

B ho _ h
TV VmEt ()

Die Werte von u und v erhalten wir tiber D’ und E’ wie folgt:
u\ _(d e\ (v
v) \—e d v/

_ F ' r_
" und V_2-E’->\1_2-E’ und D'=d-D—e-E, E e-D+d-E

mit v =

Die resultierenden Terme fiir v und v, ausgedriickt allein durch die Parameter A, B, C, D, E, F sind
ziemlich umfangreich ...

Der Vektor SF vom Scheitelpunkt S zum Brennpunkt F ist gegeben durch
SE_ (") = 1 (B-E-C-DY _ 1 [
\s) 2-(A+0C)2 \B-D—A-E) 2-spur2 \ I

Somit gilt fir den Brennpunkt F

F=(u+r/v+s)
und entsprechend fiir den Leitpunkt L
L=(u—-r/v—ys)
Die Hauptsymmetrieachse hat die Gleichung
hi-(y—v)=h(x—u)
Fir die Leitgerade gilt
hy - (y—v+s)=—h-(x—u+r)

Die Parabel lasst sich als Kegelschnitt realisieren.
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Die Falle 6 und 7 konnen nicht auftreten.

Fille 8, 9 und 10: Eine Hyperbel

X/ 2 y/ 2
Die Kurve (1) ist deckungsgleich mit <a> - <> =1

b
. »_ -DET _ -DET _ =, DET _ DET _ |
T Xo-det AL -(M)2 T CAp-det (A)2- X0

—DET < 1 1 ) B —DET - diff
N det?

2 21 p2 b2 X
Es ist e:\/%: a;:\/1+32: 1—>f (wie bei der Ellipse)

Der Mittelpunkt M der Hyperbel, also der Schnittpunkt der Asymptoten und der Symmetrieachsen,
bestimmt sich ebenfalls wie bei der Ellipse:

M—(u/v)—<hl hz)_(B-E—C-D B'D—A-E>

(wie bei der Ellipse!)

det/ det A.-C— B2 A.-C— B2

Das Quermass p wird ebenfalls wie bei der Ellipse berechnet:

_ v |-DET
SRR N PHE
Fiir die Riicktransformation gelten ebenfalls dieselben Formeln wie bei der Ellipse.

Die Hauptsymmetrieachse durch die beiden Brennpunkte und M hat die Gleichung
d-(y—v)=—e-(x—u)

Die Nebensymmetrieachse, welche die beiden Hyperbelaste aufeinander abbildet, hat die Gleichung
e-(y—v)=d-(x—u)

Auch die Leitpunkte und die Leitgeraden werden genau wie bei den Ellipsen berechnet.

Hyperbeln entstehen als Kegelschnitte oder zum Beispiel als Schnitte von Hyperboloiden.
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Spezialfall 9: Eine rechtwinklige Hyperbel

Wenn gilt spur=A+4+C =0 dannist A=—C und X\; = —Xo.
Die Kurve ist deckungsgleich mit (x')? — (y')? = a°

. o -DET _ -DET _ -DET
CXocdet A -(A2)2 0 ()3

. /c? 2 a2
Es gilt P=a2+a2=2-2° €= — = T:ﬁ
a a
Die beiden Asymptoten stehen senkrecht aufeinander. Fiir den Mittelpunkt, die Symmetrieachsen

usw. entnehme man die Terme aus dem allgemeinen Fall 8 bis 10.

Die obige Gleichung fiir x’ und y’ kann durch eine zusatzliche Drehung um 45° umgeformt werden
in

Asymptoten sind dann die beiden Koordinatenachsen.

Fall 11: Die Losungsmenge enthalt nur einen Punkt

Die Untersuchungen fiihren hier auf die zu (1) dquivalente Gleichung
A (X4 X2 (V)P =0

Wegen det > 0 haben beide Eigenwerte dasselbe Vorzeichen, die einzige Losung von (1) ist dann

/\/l:(u/v):<h1 h2>

det/ det

Dieser Fall kann als Kegelschnitt oder als Kugelschnitt realisiert werden.

Fall 12: Ein Paar paralleler Geraden

In den Fallen 12, 13 und 14 ist die Kurve (1) kongruent zu
(X2 +2-D-(X)+A-F=0 falls A#0
(X2 4+2-E-(X)+C-F=0 falsC#0

Diese quadratischen Gleichungen haben zwei, eine oder keine Losung fiir x’, je nach dem Vorzeichen
der Diskriminanten

4. (D>-A-F) fals A#0

4.-(E2—-C-F) falls C#0
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Ist die Diskriminante positiv (Fall 12), so gibt es die folgenden beiden Lésungen fiir x':

X' =-D+vVD2—-A-F falls A#0
X' =—E++\E2-C-F falls C#0

Da die Werte von y’ beliebig sind, entsprechen diese beiden Losungen fiir x’ einem Paar von
Geraden, die parallel sind zur y’-Achse.

Fiir die Losungen von (1) miissen diese beiden Geraden noch mit der folgenden Riicktransformation
an den richtigen Platz geschickt werden:

X 1 A —B x'
<y>:A2+BZ'<B A)(V’) falls A7 0
X 1 B —-C X!
(y):c2+/32'<c B).(y,) falls C £ 0

Die Falle 12, 13 und 14 konnen als Schnitt einer Ebene und eines Zylinders realisiert werden.

Fall 13: Eine Gerade

Die Situation ist dieselbe wie im Fall 12, nur ist jetzt der Wert der Diskriminanten null. Es gibt nur
eine Losung fiir x’, namlich

xX'=—-D falls A#0
x'=—E falls C#0
Die entsprechende Gerade fiir (x’/y’) muss noch mit der passenden Riicktransformation von Fall

12 behandelt werden.

Fall 14: Die leere Menge

Wir sind immer noch in der Situation von Fall 12, nur ist jetzt die Diskriminante negativ. Es gibt
keine Losung (x’/y’), und entsprechend hat auch (1) keine Losungen.

Fall 15: Zwei einander schneidende Geraden

Hier haben wir nochmals einen echten Kegelschnitt: Statt der beiden Hyperbeldste schneidet die
Ebene zwei Mantellinien aus dem Doppelkegel, weil sie durch dessen Spitze verlauft.

Die Hyperbelgleichung reduziert sich zu

(X/)2 (y/)z o r b2 r /_>‘2 /
32 b2 —O < y—:l: ?X—:t TI‘X

Dieses Geradenpaar mit Schnittpunkt (0/0) muss noch mit der Riicktransformation der Ellipse
(siehe Fall 2) auf die Losung von (1) abgebildet werden. Wir erhalten dann ein Geradenpaar mit
dem Schnittpunkt M = (u/v).

13



4 Zur Korrektheit der Fallunterscheidungen

Wir zeigen in diesem Abschnit, dass die Fallunterscheidungen, wie sie in den Tabellen 9.1 und 9.2
auftreten, korrekt und vollstandig sind. Wir gehen dazu von der Gleichung (2) aus:

A B D
(x y 1)-|B C E (2)
D E F

— < X
Il
o

oder, mit den entsprechenden Abkiirzungen,

XT - M-X=0 (3)

Die symmetrische Untermatrix besitzt zwei senkrechte Eigenvektoren mit den zugehorigen

A B
B C>
Eigenwerten A1 und X>. Die Untermatrix ist daher ahnlich zur Diagonalmatrix mit diesen beiden
Eigenwerten auf der Hauptdiagonalen.

Es gibt sogar eine Rotation mit

(e )L -0 %) g

Setzen wir
d —e O
R=le d 0
0O 0 1

so folgt aus (3)
XT. Q1. M-Q1-Q.-X=0

und daraus wegen Q71 = Q7

Q-X) - (@-M-Q@1H (@-X)=0 (5)
Mit
dx—e-y x'
X =Q-X=|e-x+d-y|=1[V
1 1
und
A 0 D
M=Q-M-Q'=[|0 X F
D' E F
wird (5) zu

XT. .M. X' =0
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oder

>\1 0 D/ X/

(xX ¥y -0 X E|-[y]=0 (6)
D E F 1
Ausmultipliziert liefert das
A-(X)242-D X+ (V)P H2-E -y +F=0 (7)

Die Rotation hat das gemischte Glied 2- B - x - y eliminiert.

Dabei gilt det=X1- X =A-C—-B?
spur=XA1 +X> =A+C
DET=A-C-F+2-B-D-E—-A-E>-C-D?’—-F-B?
aber auch DET = A1 X2 F—Xz-(D)? — A1 - (E")?
und DET=D-h1+ E-hy+ F - det
Die Matrizen M und M’ = Q- M- Q™! haben ja dieselbe Determinate. Die weiteren Darstellungen
von DET werden noch von grossem Nutzen sein.
Wir betrachten zuerst den parabolischen Fall mit det = 0.
Wegen det = A1 - A> muss einer der Eigenwerte null sein. Beide konnen nicht null sein, da wir
A = B = C = 0 ausgeschlossen haben.
a) Es sei zuerst zusatzlich DET # 0. Wegen
DET =X1- X F—=X2- (D)2 =X -(E")2 =Xy (D)% =X (E')?
gilt dann
spur=Xyund E'#0 falls A\, =0
spur=Xound D' #0 falls A1 =0

In beiden Fallen hat die spur das entgegengesetzte Vorzeichen von DET. Es kann somit nur
der Fall 5 auftreten, die Falle 6 und 7 sind nicht moglich.

Die spur hat somit auch dasselbe Vorzeichen wie k nach unseren Definitionen auf der Seite
4. Daraus ergibt sich, dass im Fall det = 0 und DET # 0 immer gilt

spur=A1=A+C#0und A\ =0
Es ist also in diesem Fall
DET = —)\; - (E')?
b)  Nun sei neben det = 0 auch noch DET = 0. Im Abschnitt 5 zeigen wir, dass in diesem Fall
(1) aquivalent ist zu
(X2 +2-D-xX+A-F=0 falls A#0
(X2 +2-E-xX+C-F=0 falsC#0

Diese quadratischen Gleichungen fiir x’ haben je nach dem Wert der Diskriminanten zwei,
eine oder keine Losung. So entstehen die Falle 12, 13 und 14.

Alle Details im parabolischen Fall werden im Abschnitt 5 ausgearbeitet.
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In der elliptischen und der hyperbolischen Situation kénnen wir die Gleichung (7) weiter verein-
fachen. Wegen det = A1 - A # 0 folgt A1 # 0 und X, # 0. Die folgende Umformung ist daher

gestattet:
D’ 2 = 2 (D/)2 (El)2
A T+ = A "+ — ) =—F
1<x—|—>\1>+2<y+>\2> +>\1 +>\2
Wir setzen
D’ E’
n_ o= nm_ o=
X" =x"+ " und vy vy + .

und erhalten

also

—F A1 X+ (D)2 X+ (E)? -\

Ay - 11\2 Ao - //2:
1 (X7)7+ A2 (V) Mo

—DET
MR e (V= o (8)

Die Losungen von (8) gehen durch eine Rotation und eine Translation aus den Losungen von (1)
hervor, die Losungskurven sind also kongruent.

Der elliptische Fall liegt vor, wenn A1 und A, dasselbe Vorzeichen haben, also wenn gilt A1 - Ao =
det > 0.

<)

d)

e)

Hat —DET dasselbe Vorzeichen wie A1 oder A, oder die spur, so stellt (8) die Gleichung einer
Ellipse in Hauptachsenlage dar, wir haben den Fall 1 oder 2.

Der Fall 3 kann nicht auftreten, da die spur nicht null sein kann, wenn A7 und XA, dasselbe
Vorzeichen haben!

Hat DET das ,falsche” Vorzeichen, also dasselbe wie A1 oder A, dann hat die Gleichung (8)
keine Losungen und wir sind im Fall 4.

Ist DET aber null, so ist die einzige Losung von (8) der Punkt (x”/y”) = (0/0) und wir sind
im Fall 11.

Im hyperbolischen Fall haben A1 und X unterschiedliche Vorzeichen. Dann ist A1 - A» = det < 0.
Die Gleichung (8) hat dann immer Ldsungen.

f)

g)

Ist DET # 0, so besteht die Losungsmenge aus einem Paar von Hyperbelasten, wir haben die
Falle 8, 9 und 10.

Ist DET = 0, so reduziert sich (8) auf

A (X2 = =xa - (V") (9)

wobei ja A1 und X, unterschiedliche Vorzeichen haben. Losungsmenge von (9) ist das Paar

von Geraden
[ A1
[/ X"
y W

die sich im Nullpunkt schneiden. Das ist der Fall 15.
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5 Die Details im parabolischen Fall

Wir sind also im Fall von det = 0. Wir studieren zuerst den ,nichtentarteten” Fall mit DET # 0.
Dann gilt

M=A+C=spur#0 und X =0
Die Gleichung (7) reduziert sich zu
A-(XN)24+2-D-X4+2-E-y+F=0 (10)

Wegen DET = —\; - (E’)? # 0 gilt auch E’ # 0 und wir kénnen (10) umformen zu

D'\? (D')? F
. / _ p— . ,. ,_
A1 (X+>\1) 2-E (y 2'E’->\1+2~E’>
oder
a-(xX'—u)P = -Vv) (11)
oder
3- (X//)2 — y// (12)

mit den folgenden Variablendefinitionen:

A A+C

T E T o (13.1)
D D

! __ _

YT T AxC (13.2)

,_ (O)y F (D) / /

V=2 Fn 2F \azc )2 FE) (13.3)

Wir miissen also D' und E’ berechnen, wozu wir die Parameter d und e der Rotation bendtigen.
Diese werden leider durch die Gleichung

d —e A B A+C O d —e
(e d)'(B C>_< 0 0>'<e d) (14)
nicht eindeutig bestimmt.

Immerhin liefert (14) die Resultate

A C -B
2 _ 2 _ A —
d = ArC e AT C und e-d AT C (15)
Die Berechnung von
A 0 D
M=Q-M-Qt=[0 X FE
D E F
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liefert weiter
D)=d-D—e-E (16.1)
E'l=e-D+d-E (16.2)

Damit berechnen wir im folgenden den Vektor .?E der vom Scheitelpunkt der Parabel zum Brenn-
punkt fiihrt. Aus diesem Vektor ergeben sich dann die Werte fiir d und e.

(1) wird durch eine Drehung um den Nullpunkt in (11) iibergefiihrt, eine Translation liefert an-
schliessend die rote Kurve (12):

v

ol

Die Riicktransformation, welche die rote Parabel fiir (x”/y”) wieder auf die Losung von (1) in
(x/y) abbildet, kdnnen wir schreiben als

X d e X" u
()= (% 5)-C)+C) a7
wo S = (u/v) der noch zu bestimmende Scheitelpunkt der Parabel (1) ist.

— — 1
Nun gilt allgemein S"F" = S'F' = <0/43>

Dieser Vektor wird von der Rotation in (17) auf den Vektor SF abgebildet. Mithilfe von (13.1),
(15) und (16.2) lasst sich erstaunlicherweise der Vektor SF berechnen, obwohl wir die Werte von
a, d und e noch nicht kennen:
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2o (94 ). (0)L 1 (B-E-C-D
“\—e d =) 2 (A+C)2 \B-D-A-E

o def () 1 h1
Sk = <s> ~ 2-spur? <h2> (18)

Gilt DET # 0, so kann dieser Vektor nicht null sein wegen

also

DET=D-hi+E-hh+F-det=D-h+E-h

Aus diesem Vektor SF erhalten wir jetzt die Werte fiir d und e:

d = cos(p) = AL (19.1)
i (19.2)

¢ snte) = (h1)2 + (h2)?

d und e werden so definiert, dass der Vektor (?) auf einen Vektor der Richtung SF abgebildet

wird. Die Kurven (11) und (12) sind also immer nach oben gedffnet, das Vorzeichen von ain (13.1)
ist immer positiv. e und d sorgen in (16.2) dafiir, dass E’ das passende Vorzeichen hat.

Damit sind mit (16) auch E’ und D’ bekannt, woraus wir wiederum mit (13) die Werte von a, v/
und v’ erhalten. Aus v’ und v/ erhalten wir schliesslich die Koordinaten v und v des Scheitelpunktes

S der Parabel.
u d e u
()= (5 9)-() 2
Mit (18) erhalten wir daraus die Koordinaten des Brennpunktes F und des ,Leitpunktes” L:
F=(u+r/v+r) (21.1)
L=(u—r/v—r) (21.2)

Die Symmetrieachse der Parabel wird durch die Gleichungen

e-(y—v)=d-(x—u) (22.1)
oder

hi-(y—v)=h-(x—u) (22.2)

beschrieben, da ja SF ein Richtungsvektor dieser Symmetrieachse ist. Die Leitgerade steht darauf
senkrecht und geht durch den Punkt L:

e(x=(u=r)=—-d-(y—(v—1y5)) (23.1)
oder

—h1~(x—u+r):h2-(y—v—|—s) (232)
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Damit sind alle geometrischen Bestimmungsstiicke der Parabel bekannt und konnen vom GeoGebra-
Programm ,parabol.ggh” berechnet und gezeichnet werden.

Nun wollen wir noch schone Formeln fiir die algebraischen Kennzahlen a und p der Parabel herleiten.

Aus (13.1) und (16.2) erhalten wir

A (A+O) V(M) + ()?

T E T T 2 (m-D+hE) (24.1)
und daraus
1 E")2 A - (E)2 —DET
2-a |\ (A1) (A1) (A1)
Diese Formel hat den Vorteil, dass sie fiir alle nichtentarteten Kegelschnitte gilt.
Andere schone Darstellungen erhalten wir, wenn wir die folgende Identitat ausniitzen:
—DET - (A+C) = (h)? + (h)? (26)

Diese Gleichung gilt nur im parabolischen Fall, also wenn det = 0 gilt. Die Korrektheit von (26)
ergibt sich durch einfaches Nachrechnen aus der Darstellung von DET gemass Seite 5:

DET =D -h+E-hy+F-det = D-hy+E - hy

Aus (25.1) erhalten wir mit (26) den Ausdruck

p= \/_DET (A+C) \/(h1)2 nal U2 VA G e ) PN

M) (A+C) (A+0)*  (A+QC)2

Fir a erhalten wir daraus

S 1 (A+C)? (24.2)

2:p 2-/(M)? + (h2)?

Unsere Formeln fiir p und a sind denjenigen in [3] und [4] lberlegen, weil sie die Voraussetzung
A £ 0 nicht notig haben. Sie gelten in allen Fallen.

Die letzten beiden Formeln hatten wir auch direkt aus (18) ableiten konnen. Der Betrag des Vektors
— 1
SF ist ja bei allen Parabeln gleich 5 p oder 735

Nun gilt es noch den ,entarteten” Fall mit DET = 0 zu studieren.
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Es sei also DET = 0 und det = 0.
(26) zeigt, dass gilt

DET =0 <= (hh=0und h, =0) <= (BE =CD und BD = AE)

Leider muss man hier zwei Falle unterscheiden, die sich aber komplett analog behandeln lassen.

a)

Es sei A # 0 (es ist ja mindestens eine der Zahlen A und C von null verschieden).

Wir multiplizieren (1) mit A und erhalten
A2 x> +2-A-B-x-y+A-C-y>+2-A-D-x+2-A-E-y+A-F=0
Mit A-C = B2 und A- E = B- D ist das dquivalent zu
(A-x+B-y)24+2-D-(A-x+B-y)+A-F=0

oder
(xX)2+2-D-X+A-F=0 (27.1)

Die Koordinatentransformation ist eine Drehstreckung:

() =(% %))

Die inverse Abbildung existiert, sie lautet

/
()= e (G ) () s

Die Losungen von (27.1) hangen von der Diskriminanten ab:
4.D?>—4.-A-F=4-(D*>—A-F)

Damit ist fiir den Fall A # 0 das Unterscheidungskriterium der Falle 12, 13 und 14 bewiesen.

Jede Losung von (27.1) fiir x’ liefert als Losungsmenge fiir (x’/y’) eine Gerade mit festem
x'-Wert, welche parallel liegt zur y’-Achse. Diese Geraden sind dann fiir die Lésung von (1)
noch mit der Abbildung (28.1) an den richtigen Ort zu riicken.

Der Fall 14 liegt vor, wenn gilt D> — A- F < 0. (27.1) hat dann keine Lésungen, und die
Losungsmenge von (1) ist somit auch leer.

Im Fall 13 gilt D?> — A- F = 0. Einzige Losung von (27.1) ist dann x’ = —D. Bildet man die
beiden Punkte (—D/0) und (—=D/1) mit (28.1) ab, so hat man zwei Punkte der Geraden,
welche die Losungsmenge von (1) bildet.

Im Fall 12 mit D? — A- F > 0 hat die Gleichung (27.1) zwei Lésungen, namlich
X'=-D++vD2-A-F

Die beiden Geraden zu diesen x’-Werten mit beliebigen Werten von y’ miissen wieder mit
(28.1) auf die beiden parallen Geraden abgebildet werden, welche die Losungsmenge von (1)
darstellen.
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b) Essei C # 0 (wenn A = 0 gilt, ist sicher C # 0). Dann multiplizieren wir (1) mit C und

erhalten ganz analog
(X2 +2-E-X+C-F=0

Die entscheidende Diskriminante ist jetzt
4.F>—4.C-F=4-(E>-C-F)

und die Riicktransformation ist gegeben durch

()-za (e 5)0)

Damit sind die Falle 5, 6, 7 sowie 12, 13 und 14 vollstandig abgehandelt.
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6 Die Details im elliptischen Fall

Es sei also det > 0. Dann haben A; und A» dasselbe Vorzeichen, und beide Eigenwerte sind
verschieden von null.

Wir studieren zuerst den ,nicht-entarteten” Fall mit DET # 0.

Wir starten bei der Gleichung

—DET

. 1\2 . //2:
A (X)X (V) e

(8)

Nach unseren Definitionen gilt [A1| > |X2| > 0, da k in diesem Fall dasselbe Vorzeichen hat wie
A1, Ao und die spur. Deshalb hat die Ellipse (8) ihre Brennpunkte auf der y-Achse. Dies wollen wir
mit einer zusatzlichen Drehung um 90° dndern. Statt (8) haben wir dann

. . —-DET
o (R)P+d - (9)7 = — - (30)

Vergleichen wir mit der Ellipsengleichung in Mittelpunktslage

X2 )2
2 =1
so erhalten wir
2 —DET  —-DET (31.1)
N Ao - det N A1 ()\2)2 '
—DET —DET
b? (31.2)

T cdet . ()2

mit a®> > b?. Mittelpunkt der Ellipse (30) ist M’ = (0/0), Scheitelpunkte, Symmetrieachsen,
Brennpunkte und Leitgeraden sind bekannt. Diese Bestimmungsstiicke werden von der Riicktrans-

formation
®>:<i 9'@)*@) (32)

auf die Losung von (1) iibertragen. Wir bestimmen zuerst den Mittelpunkt M = (u/v) der Losung
von (1), also den translativen Anteil von (32).

Wir betrachten dazu die Gleichung

)2 cN\2
W0 -

(33) definiert ein elliptisches Paraboloid als Flache im Raum. Diese Quadrik hat ihr absolutes

Minimum in z-Richtung bei X = 0 und y = 0. Dort sind die beiden partiellen Ableitungen von (33)
null:
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Dasselbe gilt auch bei der Original-Ellipse (1)! Wir setzen also die beiden partiellen Ableitungen
von (1) gleich null:
2-A-x+2-B-y+2-D=0

2-B-x+2-C-y+2-E=0

Fiir den Mittelpunkt M = (u/v) muss also gelten

A-u+B-v=-D
B-u+C-v=—-E

A BY (u\_(-D
B C v) \-E
Multiplikation von links mit der inversen Matrix liefert die Werte von u und v:
uy 1 B-E-C-D\ 1 h1
(v>—A-C—B2'<B.D—A-E)_E(hz) (34.1)

Die gleichen Uberlegungen mit demselben Resultat gelten auch im hyperbolischen Fall. Anstelle des
Minimums der Quadrik wird dort die Lage eines Sattelpunktes bestimmt:

Nur im Sattelpunkt des hyperbolischen Paraboloids sind die beiden partiellen Ableitungen der qua-
dratischen Form gleich null.
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Es gilt also fiir det # 0 immer

M= (u/v)= ( i h2> (34.2)

det/ det

Damit ist die Translation in (32) bekannt. Wir kommen zur Bestimmung der Parameter d und e
der Rotation.

1Y

x< Y

Wenn B nicht null ist, stehen die Symmetrieachsen der Ellipse schief zu den Koordinatenachsen und
wir konnen den Winkel ¢ der Rotation mithilfe des Eigenvektors # bestimmen. Beim Ubergang von
(8) zu (30) haben wir aber noch eine zusatzliche Drehung um 90° vorgenommen. Daher vertauschen
sich die Rollen von sin(¢) und cos() und wir erhalten fiir die Matrix der Riicktransformation

B B
d = cos(p) = Al = NSO (35.1)

A Ao — A
Vil VA= X0)2 + B2

e =sin(p) = (35.2)

Wenn B null ist, kdnnen die Nenner in (35) auch null werden. Dieser Fall muss daher separat
behandelt werden. Er ist aber besonders einfach, weil dann keine Rotation erforderlich ist oder aber
eine Drehung um 90°.

Eine kleine Untersuchung zeigt, dass diese beiden Félle durch das Vorzeichen von DET - (A — C)
unterschieden werden konnen:

(B=0 und DET-(A-C)>0) = (d=1 und e=0) (36.1)

(B=0 und DET-(A-C)<0) == (d=0 und e=1) (36.2)
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Im GeoGebra-Programm ,ellipt__hyperbol.ggb” wird diese Unterscheidung mithilfe der Variablen g
vorgenommen.

Die Halbachsen der Ellipse sind schon in (31) bestimmt worden. Berechnen wir noch die lineare
und die numerische Exzentrizitat sowie das Quermass:

Fir die lineare Exzentrizitat gilt

—DET 1 1 —DET X1 —X>  —DET - diff
2 2 2
c =9 det <x2 x1> det Ao det? (37)
Daraus ergibt sich fiir die numerische Exzentrizitat e
—DET X —X;

2 ' } A1 —A2) - A A
. %: det  Ap-dp . [(Ar—A2)-Xe 122 (38)

a —-DET 1 A1 A2 A1

det Ao
2

Fiir das Quermass p einer Ellipse gilt p = - also

DET?
» b*  (M\)*-(n)2  —DET
p=">5= _ T ()3
a DET (A1)
A1 - (A2)?

Es gilt also dieselbe Formel wie bei der Parabel:

Damit konnen wir jetzt alle Bestimmungsstiicke der Ellipse (1) aus den bekannten Werten der
kongruenten Ellipse (30) berechnen und vom GeoGebra-Programm ,ellipt _hyperbol.ggb” zeichnen
lassen.

Fiir die Hauptsymmetrieachse der Ellipse ergibt sich

d-(y—v)=—-e-(x—u) (40)

Die Nebensymmetrieachse wird beschrieben durch

e-(y—v)=d-(x—u) (41)

Die beiden Brennpunkte sind bestimmt durch

(4 ()
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Genauso erhalten wir die Scheitelpunkte auf der Hauptsymmetrieachse

(4 -(5)-()

Fiir die Nebenscheitelpunkte berechnen wir

(—de 3) ' (fb> * (5) (44)

Die Leitgeraden sind parallel zur Nebensymmetrieachse, sie laufen durch die ,Leitpunkte”
d e +a/e u
(5 8- (59 +0) )

Der ,entartete” Fall mit DET = 0 bereitet keine Schwierigkeiten. Einzige Losung von (30) ist
dann der Punkt (0/0). Dieser Punkt wird von der Riicktransformation auf M = (u/v) abgebildet.
M = (u/v) ist dann die einzige Losung von (1).
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7 Die Details im hyperbolischen Fall

Das meiste von dem, was wir im elliptischen Fall gefunden haben, ist auch im hyperbolischen Fall
gliltig.
Ausgangspunkt ist wieder die Gleichung (30), nur haben jetzt die beiden Eigewerte A; und X,

unterschiedliche Vorzeichen. Vergleichen wir (30) mit der Hyperbelgleichung in Mittelpunktslage,
also mit

X2 )2
2 !
so erhalten wir
2 —DET  —-DET (46.1)
N >\2 - det B >\1 . ()\2)2 '
DET DET
[ (46.2)

T cdet . ()2

Einzig das Vorzeichen von b? hat einen andern Wert als im elliptischen Fall. Da bei Hyperbeln
c® = a° + b? gilt, behalten aber alle Rechnungen, die wir bei den Ellipsen gemacht haben, ihre

Giiltigkeit. Bei Ellipsen gilt ja ¢® = a° — b°.

Unverandert gilt auch

det/ det

/\//:(u/v):(hl h2>

und auch die Werte von d und e fiir die Rotationsmatrix der Riicktransformationen konnen genau
gleich berechnet werden. Es gibt daher auch nur ein einziges Programm ,ellipt __hyperbol.ggb”, um
die ausgezeichneten Punkte und Geraden einzuzeichnen.

Bei den Ellipsen haben wir fiir a2 = b? den Spezialfall eines Kreises. Es gilt dann A\; = Xo.

Auch bei Hyperbeln kann a? = b? gelten, wenn A\; = —\5 gilt. In diesem Spezialfall hat die Hyperbel
zwei zueinander senkrecht stehende Asymptoten. Der Fall tritt genau dann auf, wenn gilt spur = 0.
Diese Bedingung ist ja aquivalent zu Ay = —Xo.

Die Asymptoten der Hyperbel werden in allen Fallen aus der Riicktransformation der beiden Geraden

| b2 [—MXo

gewonnen.

Den ,entarteten” Fall mit DET = 0 haben wir schon im Abschnitt 4 auf der Seite 16 behandelt.
Die Losungen von (1) bestehen dann gerade aus dem Paar von Geraden, welches wir mit der
Riicktransformation aus (47) erhalten. Die beiden Geraden schneiden sich in M, man braucht daher
nur noch je einen weitern Punkt von (47) abzubilden. Die Rollen von A; und X, sind gegeniiber
der Seite 16 vertauscht, weil wir neu von der Gleichung (30) ausgehen und nicht mehr von der
Gleichung (8).
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8 Visualisierung und Kontrolle mit GeoGebra

Die beiden Programme ,ellipt _hyperbol.ggb” und ,parabol.ggb” konnen frei von meiner Webseite
.physastromath.ch/material/mathematik /geogebra/" heruntergeladen werden. Sie brauchen ei-
gentlich keine grossen Erlauterungen. Mittels Schiebereglern kdnnen die Parameter der quadrati-
schen Gleichung eingestellt werden und der entsprechende Kegelschnitt wird vom GeoGebra-Befehl
.Kegelschnitt” sofort gezeichnet. Dazu werden dann die Brennpunkte, Hauptachsen, Leitgeraden
und Asymptoten etc. nach unseren Formeln berechnet und eingezeichnet. Waren die Formeln falsch,
so wiirden die entsprechenden Punkte und Geraden ganz quer in der Landschaft stehen (was sie
natiirlich zu beginn auch gemacht haben ... ).

Die Variablennamen sind meist wie in den Abschnitten 2 bis 7 dieses Skriptums gewahlt. GeoGebra
unterscheidet Gross- und Kleinschreibung, und auch die Variablennamen D’ und E' sind erlaubt. In
wenigen Fallen weichen die Bezeichnungen dennoch von denjenigen im Skriptum ab :

p der erste Eigenwert A1

q der zweite Eigenwert X»

querl das Quermass p des Kegelschnitts
quer2 das Quermass p des Kegelschnitts
epsl die numerische Exzentrizitat €
eps2 die numerische Exzentrizitat €

Einige Werte wie zum Beispiel die Exzentrizitat und die spur werden zur Kontrolle auf verschiedene
Arten berechnet.

Beim Programm ,parabol.ggb” kann der Wert von C nicht eingegeben werden. C wird aus den
Werten von A und B so berechnet, dass det = A- C — B? = 0 gilt, damit man auch sicher im
parabolischen Fall ist. Es ist also C = B?/A, weshalb fiir A = 0 keine Parabel angezeigt wird.

Wenn Sie den Bereich oder die Feinheit der Schritte bei den Schiebereglern A bis F andern wollen,
brauchen Sie nur mit der rechten Maustaste darauf zu klicken. Es klappt ein Kontext-Menu auf;
wahlen Sie dort den untersten Eintrag ,Eigenschaften” und Sie konnen alle Vorgaben abandern.

Falls Sie eine Fehlfunktion finden, bitte ich Sie, mir diese mitzuteilen via gub@stafag.ch .
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