
Ellipsen

Martin Gubler

zum 60. Geburtstag

mit herzlichen Glückwünschen
von Ihrer Mathematik-Schwerpunktfachklasse

Kantonsschule Frauenfeld, Frühlingssemester 2015





Vorbemerkung

Im Frühlingssemester 2015 bereiteten elf Schülerinnen und
Schüler der Schwerpunktfachklasse Mathematik an der Kan-
tonsschule Frauenfeld ein Unterrichtsmodul über die Ablei-
tung der drei Keplerschen Gesetze aus dem Newtonschen
Gravitationsgesetz vor. Dieses Unterrichtsmodul bildete den
wesentlichen Inhalt meines Erfahrungspraktikums im Fach
Mathematik, das ich unter der Leitung von Martin Gubler
durchführen konnte.

Angeleitet von Fragestellungen ihres Fachlehrers trug jede(r)
Schüler(in) mindestens eine Ausarbeitung zu den Kapiteln
des nachfolgenden Inhaltsverzeichnisses bei. Die weitgehend im Selbststudium erarbei-
teten Ergebnisse und ihre vollständigen Herleitungen wurden in der Klasse präsentiert
und diskutiert.

Die Zusammenfassung der inhaltlichen Aussagen, ihre stilistische Überarbeitung und
Illustration erfolgt aus aktuellem Anlass. Ich danke allen beteiligten Schülerinnen und
Schülern, besonders Rino Sogno, für die Unterstützung und diskrete Mitarbeit.

Ralf Vanscheidt

Zofingen im April 2015
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1 Definitionen und Bezeichungen

Ausgehend vom Einheitskreis {(x, y) : x2 + y2 = 1; x, y ∈ R} führen die Koordina-
tentransformationen x "→ x

r
und y "→ y

r
zu einer Streckung in x– und y–Richtung um

den Faktor r. Verwendet man für die Streckung in x–Richtung den Streckfaktor a, für
die Streckung in y–Richtung den Streckfaktor b, so erhält man

x2

a2
+

y2

b2
= 1 (1)

Abbildung 1: Die Grundgrössen einer Ellipse
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Die Menge aller Punkte (x, y), die Gleichung (1) erfüllen, bilden eine Ellipse. Man
nennt Gleichung (1) daher Ellipsengleichung (in kartesischen Koordinaten).
Wir können nachfolgend stets a > b annehmen. Andernfalls vertauscht man x und y.
Die Ellipse besitzt zwei Brennpunkte F1 und F2, die durch

BF1 = BF2 = a (2)

definiert sind, wobei B = (0, b) ist. Man nennt a die grosse und b die kleine Halbachse
der Ellipse. Definiert man c durch

c =
√
a2 − b2 (3)

so besitzen die Brennpunkte die Koordinaten

F1 = (−c, 0) und F2 = (c, 0) (4)

Man nennt c die lineare Exzentrizität der Ellipse. Der dimensionslose Parameter

ε =
c

a
(5)

wird numerische Exzentrizität genannt. Es gilt:

ε = 0 ⇐⇒ c = 0 ⇐⇒ a = b ⇐⇒ Die Ellipse ist ein Kreis. (6)

Für “echte” Ellipsen gilt 0 < c < a ⇐⇒ 0 < ε < 1.
Ellipsenpunkte mit x–Koordinaten ±c besitzen die y–Koordinaten ±p. Man nennt p
das Quermass (oder den Parameter) der Ellipse.
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2 Ellipseneigenschaften

Nach (3) gilt:

c =
√
a2 − b2 | quadrieren

⇒ b2 = a2 − c2 | c = εa nach (5) einsetzen

⇒ b2 = a2 − (εa)2 | ausklammern

⇒ b2 = a2(1− ε2) | Wurzel ziehen

⇒ b = a ·
√
1− ε2 (7)

Der Punkt P = (c, p) liegt auf der Ellipse. Nach (1) folgt damit:

c2

a2
+

p2

b2
= 1 | ·a2b2

⇒ b2c2 + p2a2 = a2b2 | c = εa nach (5) einsetzen

⇒ b2(εa)2 + p2a2 = a2b2 | : a2 (= 0

⇒ b2ε2 + p2 = b2 | −b2ε2, ausklammern

⇒ p2 = b2(1− ε2) | b2 gemäss (7) einsetzen

⇒ p2 = a2(1− ε2)(1− ε2) | Wurzel ziehen

⇒ p = a(1− ε2) (8)

Multiplikation von (8) mit a liefert:

ap = a2(1− ε2) | b2 gemäss (7) einsetzen

⇒ ap = b2 (9)

Der Einheitskreis besitzt den Flächeninhalt 12π. Eine Streckung in x–Richtung um den
Faktor a, in y–Richtung um den Faktor b liefert für den Flächeninhalt A der Ellipse:

A = abπ (10)

Alternativ erhält man (10) durch Integration. Löst man (1) nach y auf, so erhält man:

y = ±
b

a

√
a2 − x2 | Integration

⇒ A = 2
b

a
·
∫ a

−a

√
a2 − x2 dx | Stammfunktion einsetzen

⇒ A = 2
b

a
·
[
1

2

(

x
√
a2 − x2 + a2 · arcsin

(x

a

))
]a

−a

| ±a einsetzen

⇒ A =
b

a
·
[(

a2 · arcsin(1)
)

−
(

a2 · arcsin(−1)
)]

| arcsin(±1) = ±π
2

⇒ A =
b

a
·
[

2a2
π

2

]

| kürzen

⇒ A = abπ (11)
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3 Gärtnerkonstruktion

Gegeben sei eine Ellipse mit den Halbachsen a und b und den Brennpunkten F1 und
F2. Dann gilt für jeden Punkt P = (x, y) der Ellipse:

F1P + F2P = 2a (12)

Abbildung 2: Ansatz der Gärtnerkonstruktion

Bezeichnet Q die Projektion von P auf die x–Achse, so gilt im rechtwinkligen Dreieck
F1PQ nach Pythagoras:

F1P
2 = F1Q

2 + y2 | F1Q = x+ c einsetzen

⇒ F1P
2 = (x+ c)2 + y2 | c = εa nach (5) einsetzen

⇒ F1P
2 = (x+ εa)2 + y2 | y2 = b2 − b2

a2
x2 nach (1) einsetzen

⇒ F1P
2 = (x+ εa)2 + b2 −

b2

a2
x2 | b2 nach (7) einsetzen

⇒ F1P
2 = (x+ εa)2 + a2(1− ε2)− x2(1− ε2) | Ausmultiplizieren

⇒ F1P
2 = x2 + 2aεx+ a2ε2 + a2 − a2ε2 − x2 + ε2x2 | Vereinfachen

⇒ F1P
2 = a2 + 2aεx+ (εx)2 | Binomi

⇒ F1P
2 = (a+ εx)2 (13)
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Analog erhält man im rechtwinkeligen Dreieck F2PQ:

F2P
2 = F2Q

2 + y2 | F2Q = c− x einsetzen

⇒ F2P
2 = (c− x)2 + y2 | c = εa nach (5) einsetzen

⇒ F2P
2 = (εa− x)2 + y2 | y2 = b2 − b2

a2
x2 nach (1) einsetzen

⇒ F2P
2 = (εa− x)2 + b2 −

b2

a2
x2 | b2 nach (7) einsetzen

⇒ F2P
2 = (εa− x)2 + a2(1− ε2)− x2(1− ε2) | Ausmultiplizieren

⇒ F2P
2 = x2 − 2aεx+ a2ε2 + a2 − a2ε2 − x2 + ε2x2 | Vereinfachen

⇒ F2P
2 = a2 − 2aεx+ (εx)2 | Binomi

⇒ F2P
2 = (a− εx)2 (14)

Damit erhält man aus den Gleichungen (13) und (14):

F1P + F2P = (a− εx) + (a− εx) = 2a (15)

Abbildung 3: Die Winkelhalbierende

Wir zeigen ferner: Für alle Punkte Pi im Inneren der Ellipse gilt

F1Pi + F2Pi < 2a (16)
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und entsprechend für alle Punkte Pa ausserhalb der Ellipse:

F1Pa + F2Pa > 2a (17)

zu (16): Die Winkelhalbierende des Winkels 2γ := !(F1PiF2) schneide die Ellipse im
Punkt P . Da 2γ ≤ 180◦ folgt γ ≤ 90◦ und somit δ := 180◦ − γ ≥ 90◦. Damit gilt im
Dreieck F1PiP nach dem Kosinussatz:

F1P =
√

F1Pi
2
+ PPi

2

︸ ︷︷ ︸

>0

−2F1Pi · PPi · cos(δ)
︸ ︷︷ ︸

≥0

> F1Pi

Analog

F2P =
√

F2Pi
2
+ PPi

2

︸ ︷︷ ︸

>0

−2F2Pi · PPi · cos(δ)
︸ ︷︷ ︸

≥0

> F2Pi

und damit
F1Pi + F2Pi < F1P + F2P = 2a

zu (17): Die Winkelhalbierende des Winkels !(F1PaF2) schneide die Ellipse erneut
im Punkt P . Da der Winkel 2ϑ := !(F1PF2) ≤ 180◦ ist ϑ ≤ 90◦ und damit η :=
!(F1PPa) = !(F2PPa) ≥ 90◦. Damit gilt im Dreieck F1PaP nach dem Kosinussatz:

F1Pa =
√

F1P
2
+ PPa

2

︸ ︷︷ ︸

>0

−2F1P · PPa · cos(η)
︸ ︷︷ ︸

≥0

> F1P

Analog

F2Pa =
√

F2P
2
+ PPa

2

︸ ︷︷ ︸

>0

−2F2P · PPa · cos(η)
︸ ︷︷ ︸

≥0

> F2P

und damit
F1Pa + F2Pa > F1P + F2P = 2a

Ein Punkt P liegt demnach genau dann auf einer Ellipse mit den Brennpunkten F1, F2

und der grossen Halbachse a, falls gilt: F1P + F2P = 2a
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Jela Kovacevic

4 Brennpunkt– und Scheitelpunktform der Ellipsengleichung

Gleichung (1) beschreibt eine Ellipse mit Mittelpunkt im Koordinatenursprung. Eine
Translation um c nach rechts verlegt den Brennpunkt F1 in den Koordinatenursprung.
Die daraus resultierende Ellipsengleichung nennt man Brennpunktsgleichung. Es gilt:

x2

a2
+

y2

b2
= 1 | Translation um c nach rechts

⇒
(x− c)2

a2
+

y2

b2
= 1 | ·a2b2

⇒ b2(x− c)2 + a2y2 = a2b2 | : a2

⇒
b2

a2
(x− c)2 + y2 = b2 | b2

a2
= p

a
nach (9) einsetzen

⇒
p

a
(x− c)2 + y2 = b2 | (9) einsetzen

⇒
p

a
(x− c)2 + y2 = ap | −p

a
(x− c)2

⇒ y2 = ap−
p

a
(x− c)2 (18)

Für x = 0 erhalten wir wie gewünscht:

y2
(18)
= ap−

p

a
c2 = p

(

a−
c2

a

)

(3)
= p ·

a2 − a2 + b2

a

(9)
= p ·

b2

a
= p2

Eine Translation um a nach rechts verlegt einen Scheitelpunkt der Ellipse in den Koor-
dinatenursprung. Die daraus resultierende Ellipsengleichung nennt man Scheitelpunkts-
gleichung. Es gilt:

x2

a2
+

y2

b2
= 1 | Translation um a nach rechts

⇒
(x− a)2

a2
+

y2

b2
= 1 | ·a2b2

⇒ b2(x− a)2 + a2y2 = a2b2 | Binomi

⇒ b2x2 − 2ab2x+ a2b2 + a2y2 = a2b2 | −a2b2

⇒ b2x2 − 2ab2x+ a2y2 = 0 | −b2x2 + 2ab2x

⇒ a2y2 = 2ab2x− b2x2 | : a2

⇒ y2 = 2
b2

a
x−

b2

a2
x2 | b2

a
= p nach (9)

⇒ y2 = 2px−
p

a
x2 (19)
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Jela Kovacevic

Brennpunktlage in F1 Brennpunktlage in F2

Abbildung 4: Die Brennpunktlage

Abbildung 5: Die Mittelpunktslage

Scheitelpunktslage in S1 Scheitelpunktslage in S2

Abbildung 6: Die Scheitelpunktslage
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Severin Weber

5 Fähnchenkonstruktion der Ellipse

Aus der Parameterdarstellung des Einheitskreises {(cos(ϕ), sin(ϕ)) : ϕ ∈ R} gewinnt
man durch Streckung in x–Richtung um a und Streckung in y–Richtung um b die
entsprechende Darstellung aller Ellipsenpunkte {(a · cos(ϕ), b · sin(ϕ)) : ϕ ∈ R}. Für
einen beliebigen Winkel ϕ erhält man daher den entsprechenden Ellipsenpunkt P als
Schnittpunkt der senkrechten Geraden x = a · cos(ϕ) und der waagerechten Geraden
y = b · sin(ϕ). Die Geraden schneiden die konzentrischen Kreise um (0, 0) mit Radien
b und a in den Punkten B bzw. A. Zu jedem Winkel ϕ lässt sich also ein Punkt P der
Ellipse konstruieren.

Abbildung 7: Illustration der Fähnchen an drei Ellipsenpunkten P1, P2 und P3
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Corentin Pfister

6 Dandelinsche Kugeln

Schneidet man die Oberfläche eines Doppelkegels mit einer beliebigen Ebene im Raum,
so erhält man einen Kegelschnitt.

Abbildung 8: Vier verschiedene Kegelschnitte 1

Wir betrachten den Spezialfall, in dem die gemeinsame Schnittmenge von Kegel und
Ebene eine nicht kreisförmige geschlossene Kurve darstellt. Man stelle sich einen senk-
recht nach oben geöffneten Hohlkegel vor, in den nacheinander zuerst eine kleinere,
dann eine grössere Kugel gelegt werden, sodass diese sich nicht berühren. Die kleinere
Kugel berührt den Kegel in einem Kreis k1, die grössere Kugel in einem Kreis k2. Im
Raum zwischen den Kugeln denke man sich nun eine zunächst waagerechte Ebene. Die
Ebene wird nun geneigt, bis sie die kleinere Kugel im Punkt F1, die grössere Kugel im
Punkt F2 berührt.
Sei P ein beliebiger Punkt der gemeinsamen Schnittmenge von geneigter Ebene und
Kegel. Durch die Kegelspitze und P ist eine Mantellinie DP festgelegt, die die Kreise
k1 bzw. k2 in den Punkten A1 bzw. A2 schneiden. Da von einem gegebenen Punkt alle
Tangentenabschnitte an eine Kugel gleich lang sind, gilt:

PF1 = PA1 und PF2 = PA2 (20)

Damit ist die Summe

PF1 + PF2 = PA1 + PA2 = A1A2 unabhängig von P . (21)

Alle Punkte der gemeinsamen Schnittmenge von geneigter Ebene und Kegel erfüllen
bezüglich F1 und F2 die Bedingung der Gärtnerkonstruktion. Daher ist diese Schnitt-
menge eine Ellipse mit den Brennpunkten F1 und F2.

1http://www.mathe-online.at, 15. März 2015
2http://accromath.uqam.ca/, 15. März 2015
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Abbildung 9: Die zwei dandelinschen Kugeln 2
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Rino Sogno

7 Tangente einer Ellipse

Abbildung 10: Die Tangente im Punkt P an die Ellipse

Zur Bestimmung der Gleichung einer Tangente im Punkt P = (x0, y0) einer Ellipse
lösen wir zunächst (1) nach y2 auf und erhalten:

y2 = b2 −
b2

a2
x2 | d

dx

⇒ 2yy′ = −2
b2

a2
x | : 2y

⇒ y′ = −
b2

a2
x

y
| P einsetzen

⇒ y′ = −
b2

a2
x0

y0
ist die Tangentensteigung im Punkt P (22)

Wir setzen nun die Koordinaten von P in die allgemeine Form einer Tangentengleichung
d.h. einer linearen Gleichung y = mx+ q ein und erhalten:

y0 = −
b2

a2
x0

y0
x0 + q | + b2

a2
x2
0

y0

⇒ q = y0 +
b2

a2
x2
0

y0
| Einsetzen

⇒ y = −
b2

a2
x0

y0
︸ ︷︷ ︸

=m

·x+ y0 +
b2

a2
x2
0

y0
︸ ︷︷ ︸

=q

(23)
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Rino Sogno

Eine alternative Tangentenbestimmung beruht auf der bei Kegelschnitten universell
einsetzbaren Methode des Polarisierens. Wir erläutern die Begriffe Pol und Polare so-
wie ihren mathematischen Zusammenhang am Beispiel des Kreises.
Gegeben sei ein Kreis k und ein Punkt P in der Ebene. Dann liegt P entweder ausser-
halb, auf oder innerhalb des Kreises.

1. Fall: P liegt ausserhalb von k
Die Tangenten an k durch P berühren k in den Punkten Q1, Q2. Man nennt die Gerade
durch Q1, Q2 die Polare zum Pol P bezüglich k.

2. Fall: P liegt auf k
In diesem Fall existiert nur noch eine Tangente an k durch P . Liegt P auf dem Kreis,
so ist die Polare zum Pol P identisch mit der Tangente durch P .

3. Fall: P liegt innerhalb von k
Zwei beliebige Sekanten durch P schneiden k in den Punkten Q1, Q2 und Q3, Q4.
Die Tangenten an k durch Q1, Q2 schneiden sich im Punkt R1, die Tangenten an k
durch Q3, Q4 schneiden sich im Punkt R2. Man nennt nun die Gerade durch R1, R2

die Polare zum Pol P bezüglich k.

1. Fall 2. Fall 3. Fall

Abbildung 11: Das Polarisieren am Kreis

Zur Herleitung der Tangentengleichung (2. Fall) sei k mit Mittelpunkt (0, 0) und Radius
r gegeben. P = (x0, y0) liege auf K und Q = (x, y) sei ein beliebiger Punkt auf der
Tangente durch P an k.
Da der Radiusvektor

#     »

MP senkrecht auf dem Richtungsvektor
#    »

PQ der Tangenten steht,
gilt für das Skalarprodukt:

#     »

MP · #    »

PQ = 0 (24)
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Rino Sogno

Abbildung 12: Polarisation des Kreises mit P

Andererseits liefert die Kreisbedingung:
(

#     »

MP
)2

= r2 (25)

Addiert man die linke bzw. rechte Seite von (25) in (24), so erhält man:

#     »

MP · #    »

PQ+
(

#     »

MP
)2

= r2 | Distributivgesetz

⇒ #     »

MP ·
(

#    »

PQ+
#     »

MP
)

= r2 | Vektoraddition

⇒ #     »

MP · #     »

MQ = r2 | M,P,Q einsetzen

⇒ x0x+ y0y = r2 (26)

Im Fall der Tangentengleichung an eine Ellipse verfahren wir analog. Dazu setzen wir
den Punkt P = (x0, y0) gemäss (26) in (1) ein und erhalten:

x0x

a2
+

y0y

b2
= 1 | ·a2b2

⇒ x0xb
2 + y0ya

2 = a2b2 | −x0xb
2

⇒ y0ya
2 = −x0xb

2 + a2b2 | : (a2y0)

⇒ y = −
b2

a2
x0

y0
· x+

b2

y0
(27)
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Vergleicht man (27) mit (23), so genügt es zu zeigen, dass q = b2

y0
ist. Es gilt

q =
b2

y0
| (23)

⇔ y0 +
b2

a2
x2
0

y0
=

b2

y0
| ·
y0
b2

⇔
x2
0

a2
+

y20
b2

= 1 | ist erfüllt wegen (1) (28)

Wir erhalten also eine Tangentengleichung (27) im Punkt P einer Ellipse durch die
Berechnung der Polaren zum Punkt P .
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Nathanael Gall

8 Brennpunkteigenschaft

Abbildung 13: Gegeben sei ein Punkt Q auf einem Kreis (schwarz) k mit Mittelpunkt M

sowie ein Punkt F im Inneren von k. mQF sei die Mittelsenkrechte (grün) der Strecke QF .
Ein Punkt P der zugehörigen Ellipse (rot) ist der Schnittpunkt von mQF mit der Geraden
durch M und Q.

Gemäss Abbildung 13 lassen sich alle Punkte einer Ellipse mit Hilfe eines Leitkreises k
und einem inneren Kreispunkt F konstruieren. Die Mittelsenkrechte mQF ist dabei die
Tangente an die Ellipse im Punkt P .
Denn angenommen, es gäbe einen weiteren Ellipsenpunkt P ′ auf mQF . Bezeichnet Q′

20



Nathanael Gall

den entsprechenden Lotfusspunkt von P ′ auf k, so müsste gelten:

FP ′ = Q′P ′

Da P ′ ∈ mQF hat P ′ denselben Abstand zu F und zu Q, also:

FP ′ = QP ′

Daraus folgt QP ′ = Q′P ′ d.h. die Länge zweier Lote vom Punkt P ′ auf den Kreis k
sind gleich. Dies kann nur für den Kreismittelpunkt M gelten. Da M einen Brennpunkt
der Ellipse darstellt, ist M = P ′ unmöglich. Also berührt die Mittelsenkrechte mQF

die Ellipse in genau einem Punkt und ist demnach eine Tangente.
Die Brennpunkteigenschaft einer Ellipse bedeutet, dass ein vom Punkt F einfallender
Strahl im Punkt P so reflektiert wird, dass der ausfallende Strahl durch M verläuft.
Gemäss dem physikalischen Reflexionsgesetz Einfallswinkel gleich Ausfallwinkel muss
man zeigen, dass die Geraden gPF und gPM mit der Tangenten mQF den gleichen
Winkel einschliessen. Dies sieht man so: Die Dreiecke PFN und PQN stimmen in
drei Seiten überein. Es gilt FN = NQ, da N ∈ mQF . Ferner ist P so gewählt, das
PQ = PF ist. Die dritte Seite PN ist schliesslich beiden Dreiecken gemeinsam. Daher
ist der Einfallswinkel !(FPN) gleich dem Winkel !(QPN). Der Ausfallwinkel ent-
spricht dann dem zu !(QPN) gehörigen, gleich grossen Scheitelwinkel.
Man verwendet diese Eigenschaft der Ellipse unter anderem in der Lichtschweisstech-
nik, bei der die Wärmestrahlung einer Infrarotquelle im einen Brennpunkt durch einen
elliptischen Reflektor im anderen Brennpunkt fokussiert wird.
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9 Leitgeradendefinition einer Ellipse

Ein Kegelschnitt ist der geometrische Ort aller Punkte, die von einer festen Geraden
den ε–fachen Abstand wie von einem festen Punkt haben. Man nennt die feste Gerade
die Leitgerade und den festen Punkt Brennpunkt des Kegelschnitts. Ist 0 < ε < 1,
so erhält man eine Ellipse. Wir legen den festen Punkt F2 in den Ursprung eines
kartesischen Koordinatensystems und drehen dessen Achsen, so dass die Leitgerade l
parallel zur y–Achse im Abstand d liegt. Der Punkt P = (x, y) besitze den Abstand
d(P, l) zur Leitgeraden und r := d(P, F ) zum Brennpunkt. Nach Voraussetzung gilt
also:

ε · d(P, l) = r | Abstandsbedingung einsetzen

⇒ ε · (d− x) = r | x = r cos(ϕ)

⇒ εd− ε r cos(ϕ) = r | nach r auflösen

⇒ r =
εd

1 + ε cos(ϕ)
| εd = p einsetzen

⇒ r =
p

1 + ε cos(ϕ)
| Polarform der Ellipsengleichung gemäss (32) (29)

Abbildung 14: Die Ellipse und ihre Leitgerade
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10 Polarform der Ellipsengleichung

Gegeben sei eine Ellipse mit grosser Halbachse a und den Brennpunkten F1, F2 im
Abstand 2c. P sei ein beliebiger Punkt auf der Ellipse mit F2P = r. Dann gilt:

F1P + F2P = 2a | −r = F2P

⇒ F1P = 2a− r | Quadrieren
⇒

(

F1P
)2

= 4a2 − 4ar + r2 (30)

Andererseits folgt im Dreieck F1PF2 mit Hilfe des Kosinussatzes:
(

F1P
)2

= r2 + 4c2 − 4rc cos(180◦ − ϕ) | Additionstheorem

⇒
(

F1P
)2

= r2 + 4c2 + 4rc cos(ϕ) (31)

Gleichsetzen von (30) und (31) liefert:

4a2 − 4ar + r2 = r2 + 4c2 + 4rc cos(ϕ) | −r2, : 4

⇒ a2 − ar = c2 + rc cos(ϕ) | +ar − c2

⇒ a2 − c2 = ar + rc cos(ϕ) | (3), ar ausklammern

⇒ b2 = ar ·
(

1 +
c

a
cos(ϕ)

)

| : a

⇒
b2

a
= r ·

(

1 +
c

a
cos(ϕ)

)

| (5), (9)

⇒ p = r · (1 + ε cos(ϕ)) | : 1 + ε cos(ϕ)

⇒ r =
p

1 + ε cos(ϕ)
(32)

Abbildung 15: Brennpunktabstand r und Bahnwinkel ϕ einer Ellipse
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11 Kartesische Form der Ellipsengleichung

Gegeben sei die Menge aller Punkte P = (x, y) = (r cos(ϕ), r sin(ϕ)) in der Ebene,
die die Gleichung (32) erfüllen. Als Brennpunkte bezeichnen wir die Punkte F2 = (0, 0)
und F1 = (−2c, 0). Dann folgt aus dem Satz von Pythagoras:

(

F1P
)2

= (2c+ r cos(ϕ))2 + (r sin(ϕ))2 | Binomi

⇒
(

F1P
)2

= 4c2 + 4cr cos(ϕ) + r2 cos2(ϕ) + r2 sin2(ϕ) | ausklammern

⇒
(

F1P
)2

= 4c2 + 4cr cos(ϕ) + r2 (33)

Wäre P ein Punkt auf der Ellipse, so folgt aus der Gärtnerbedingung:
(

F1P
)2

= 4a2 − 4ar + r2 (34)

Die Grössen a und c sind durch p und ε bestimmt. Gemäss Gleichung (8) gilt a = p
1−ε2

,
woraus mit Gleichung (5) c = εa = εp

1−ε2
folgt. Zu zeigen ist demnach:

4c2 + 4cr cos(ϕ) + r2 = 4a2 − 4ar + r2 | −r2, : 4

⇔ c2 + cr cos(ϕ) = a2 − ar | : a, (5)
⇔ εc+ εr cos(ϕ) = a− r | +r − εc

⇔ r · (1 + ε cos(ϕ)) = a− εc | (5)
⇔ r · (1 + ε cos(ϕ)) = a− ε2a | (8)
⇔ r · (1 + ε cos(ϕ)) = p | : (1 + ε cos(ϕ))

⇔ r =
p

1 + ε cos(ϕ)
(35)

Abbildung 16: Der Punkt P = (r cos(ϕ), r sin(ϕ)) erfüllt die Gärtnerbedingung
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12 Leitkreis einer Ellipse

Abbildung 17: Leitkreis der Ellipse

Eine Ellipse ist der geometrische Ort aller Punkte P , die von einer Kreislinie k (Leit-
kreis) und einem Punkt F im Inneren von k denselben Abstand besitzen.
Unter dem Abstand des Punktes P zur Kreislinie k versteht man den kürzesten Abstand
d.h. das Lot von P auf k. Bezeichnet Q den Fusspunkt des Lotes auf k, so liegt P
auf der Geraden gPM durch den Kreismittelpunkt M von k und Q, da jedes Lot durch
einen Kreispunkt notwendig auch durch den Kreismittelpunkt verläuft. Alle Punkte,
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die von Q und F denselben Abstand haben liegen auf der Mittelsenkrechten mQF der
Strecke QF . Der gesuchte Punkt P ist demnach der Schnittpunkt der Geraden gPM

mit mQF .
Wir wollen zuerst die Existenz dieses Schnittpunktes nachweisen. Im Allgemeinen be-
sitzen zwei Geraden in der Ebene entweder genau einen, keinen oder unendlich viele
Schnittpunkte. Im letzten und vorletzten Fall sind die beiden Geraden mindestens par-
allel. Wir führen die Annahme gPM ‖ mQF wie folgt zu einem Widerspruch: Die Gerade
gFQ steht senkrecht auf mQF d.h. gFQ steht senkrecht auf gPM . Daher wäre gFQ ei-
ne Tangente an den Kreis im Punkt Q. Demnach müsste F entweder ausserhalb des
Kreises liegen oder mit Q zusammenfallen, im Widerspruch zur Voraussetzung, dass F
im Kreisinneren liegt.
Die Geraden gPM und mQF sind demnach nicht parallel und besitzen daher genau
einen Schnittpunkt.
Nun zeigen wir noch, dass die so konstruierten Schnittpunkte der Geraden gPM und
mQF der Gärtnerbedingung genügen. Nach Definition der Mittelsenkrechten gilt zu-
nächst:

FP + PM = QP + PM | M,P,Q kollinear

⇔ FP + PM = QM | r := QM unabhängig von P

⇔ FP + PM = r (36)
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13 Ellipsenkonstruktion

Von einer Ellipse sei ein Brennpunkt F2, der Wert der grossen Halbachse a, ein Punkt
P und die Tangente in P an die Ellipse gegeben. Dann lässt sich der andere Brenpunkt
F1 wie folgt konstruieren:

• Zeichne die Gerade g durch F2 und P .

• Trage auf g im Abstand 2a von F2 den Punkt R ab.

• Die Spiegelung von R an der Tangenten ist der gesuchte Brennpunkt F1.

Abbildung 18: Beispiel einer Ellipsenkonstruktion
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