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Vorbemerkung

Im Friihlingssemester 2015 bereiteten elf Schiilerinnen und
Schiiler der Schwerpunktfachklasse Mathematik an der Kan-
tonsschule Frauenfeld ein Unterrichtsmodul liber die Ablei-
tung der drei Keplerschen Gesetze aus dem Newtonschen
Gravitationsgesetz vor. Dieses Unterrichtsmodul bildete den
wesentlichen Inhalt meines Erfahrungspraktikums im Fach
Mathematik, das ich unter der Leitung von Martin Gubler
durchfiihren konnte.

Angeleitet von Fragestellungen ihres Fachlehrers trug jede(r)
Schiiler(in) mindestens eine Ausarbeitung zu den Kapiteln
des nachfolgenden Inhaltsverzeichnisses bei. Die weitgehend im Selbststudium erarbei-
teten Ergebnisse und ihre vollstandigen Herleitungen wurden in der Klasse prasentiert
und diskutiert.

Die Zusammenfassung der inhaltlichen Aussagen, ihre stilistische Uberarbeitung und
[llustration erfolgt aus aktuellem Anlass. Ich danke allen beteiligten Schiilerinnen und
Schiilern, besonders Rino Sogno, fiir die Unterstiitzung und diskrete Mitarbeit.

Ralf Vanscheidt

Zofingen im April 2015
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1 Definitionen und Bezeichungen

Ausgehend vom Einheitskreis {(z,y) : 2* + y* = 1; z,y € R} fiihren die Koordina-
tentransformationen  — £ und y — £ zu einer Streckung in z— und y-Richtung um
den Faktor r. Verwendet man fiir die Streckung in x—Richtung den Streckfaktor a, fiir
die Streckung in y—Richtung den Streckfaktor b, so erhalt man
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Abbildung 1: Die Grundgrossen einer Ellipse



Die Menge aller Punkte (x,y), die Gleichung (1) erfiillen, bilden eine Ellipse. Man
nennt Gleichung (1) daher Ellipsengleichung (in kartesischen Koordinaten).

Wir konnen nachfolgend stets a > b annehmen. Andernfalls vertauscht man x und y.
Die Ellipse besitzt zwei Brennpunkte Fi; und F5, die durch

BF, =BF, =a (2)

definiert sind, wobei B = (0, ) ist. Man nennt a die grosse und b die kleine Halbachse
der Ellipse. Definiert man ¢ durch

c=Va® -1 (3)

so besitzen die Brennpunkte die Koordinaten
Fy =(—c,0) und Fy=(c0) (4)

Man nennt c die lineare Exzentrizitat der Ellipse. Der dimensionslose Parameter
c
€= — 5
; ©)

wird numerische Exzentrizitdt genannt. Es gilt:
e=0 < ¢c=0 <= a=0b <= Die Ellipse ist ein Kreis. (6)

Fiir “echte” Ellipsen gilt 0 <c<a <— 0<e< 1.
Ellipsenpunkte mit z—Koordinaten 4c besitzen die y—Koordinaten +p. Man nennt p
das Quermass (oder den Parameter) der Ellipse.



2 Ellipseneigenschaften

Nach (3) gilt:

c=+va?>—0b> | quadrieren

b’ =a*—c* | c=ca nach (5) einsetzen

b> = a® — (ca)® | ausklammern

b> = a*(1 —e?) | Wurzel ziehen

b=a-V1-e? (7)

Der Punkt P = (¢, p) liegt auf der Ellipse. Nach (1) folgt damit:
2 p?

? + b_2 =1 | ~a2b2

b’c? + p’a® = a’® | ¢ = ca nach (5) einsetzen
V(ca)* +p*a® = a®b* | :a?#0

be® +p® =b* | —b%e?, ausklammern

L4 el

p> =b*(1 —£?) | b* gemiss (7) einsetzen

p? =a*(1 —&*)(1—¢*) | Wurzel ziehen

p=a(l—¢% (8)
Multiplikation von (8) mit a liefert:

44 e

4

ap = a*(1 —€®) | b* gemiss (7) einsetzen
= ap=10b (9)
Der Einheitskreis besitzt den Flicheninhalt 127. Eine Streckung in z—Richtung um den
Faktor a, in y—Richtung um den Faktor b liefert fiir den Flacheninhalt A der Ellipse:

A = abr (10)

Alternativ erhalt man (10) durch Integration. Lst man (1) nach y auf, so erhilt man:
b
y ==+t—Vva?— 1% | Integration
a

b a
= A=2- / va? — 2% dr | Stammfunktion einsetzen
a —a

b [1 ‘
= A=2-. {5 (g;\/a2 — 22 + a” - arcsin (f))} | +a einsetzen
a a —a

Q||

- [(a® - arcsin(1)) — (a” - arcsin(—1))] | arcsin(+1) = £%

: [2@25} | kiirzen

4
S-S
I

Il
o
>
N

(11)



Eliane Berchtold / Yannik Martin

3 Gartnerkonstruktion

Gegeben sei eine Ellipse mit den Halbachsen a und b und den Brennpunkten F; und
F,. Dann gilt fiir jeden Punkt P = (z,y) der Ellipse:

F,P+ P =2a (12)

Abbildung 2: Ansatz der Gartnerkonstruktion

Bezeichnet () die Projektion von P auf die x—Achse, so gilt im rechtwinkligen Dreieck
F PQ nach Pythagoras:

R R

FIP?=FQ*+y* | FIQ =z + c einsetzen

FiP?=(z+¢)*+y* | c=canach (5) einsetzen
FiP?=(z+ca)+y* |y?=0b— Z—zﬁ nach (1) einsetzen
. b2
FiP? = (x+ea)® +b>— < x* | b* nach (7) einsetzen
a
FiP?=(z+¢ca)’+a*(1 —&*) —2%(1 — <) | Ausmultiplizieren
Fi\P? = 1% + 2aex + a’e? + a® — a®c® — 2® + %2 | Vereinfachen
F\P? = a® 4 2acz + (ex)® | Binomi
F\P?=(a+ex)’ (13)



Eliane Berchtold / Yannik Martin

Analog erhdlt man im rechtwinkeligen Dreieck F5PQ):
P2 =FQ%*+y* | F,Q = c— x einsetzen

= FP?=(c—1)>+9* |c=canach (5) einsetzen
= [BP?=(ca—2)*+y* | y>=0b"— % 2% nach (1) einsetzen

_ b2
= FP?=(ca—x)’+b°— =2 | b? nach (7) einsetzen

a

= IhP?=(ca—1x)*+d*(1—¢*) —2°(1 —¢%) | Ausmultiplizieren
= FP?*=2"—2aex + a*c® +a* — a’e* — 2* +e%2® | Vereinfachen
= FyP?=a*>—2asx + (ex)® | Binomi
= RKP?=(a—cx) (14)

Damit erhalt man aus den Gleichungen (13) und (14):
FiP+F,P=(a—e¢x)+(a—ex)=2a (15)

. X
Fl
Abbildung 3: Die Winkelhalbierende
Wir zeigen ferner: Fiir alle Punkte P; im Inneren der Ellipse gilt



Eliane Berchtold / Yannik Martin

und entsprechend fiir alle Punkte P, ausserhalb der Ellipse:
P, + F,P, > 2a (17)

zu (16): Die Winkelhalbierende des Winkels 27 := <((F; P;F,) schneide die Ellipse im
Punkt P. Da 2+ < 180° folgt v < 90° und somit 9 := 180° — v > 90°. Damit gilt im
Dreieck F}FP;P nach dem Kosinussatz:

[

FiP= \/Flpf + PP, —2FPB, - PP, - cos(0) > I\ F;
V\

J

~~

>0 >0
Analog
[
FyP = \/FQBQ + PP, —2F,P, - PP, - cos(0) > F>F,
V\ ~ 7/
>0 >0
und damit

Flf)i + FQR < FiP+ F5,P =2a

zu (17): Die Winkelhalbierende des Winkels <t(F} P, F») schneide die Ellipse erneut
im Punkt P. Da der Winkel 20 := <(FyPF,) < 180° ist ¥ < 90° und damit n :=
<(FyPP,) = <«(F>,PP,) > 90°. Damit gilt im Dreieck F} P, P nach dem Kosinussatz:

[ -

FP, = \/F1P2 + PP, —2FP- PP, - cos(n) > [, P
~——

J

-~

>0 >0
Analog
[ R
FP, = \/FQP2 + PP, —2F,P - PP, - cos(n) > [P
W—/\ ~ >
>0 >0
und damit

F1Pa+F2Pa>F1P+F2P:2CL

Ein Punkt P liegt demnach genau dann auf einer Ellipse mit den Brennpunkten Fi, Fj
und der grossen Halbachse «, falls gilt: F{ P + Fo P = 2a

10



Jela Kovacevic

4 Brennpunkt— und Scheitelpunktform der Ellipsengleichung

Gleichung (1) beschreibt eine Ellipse mit Mittelpunkt im Koordinatenursprung. Eine
Translation um ¢ nach rechts verlegt den Brennpunkt F7 in den Koordinatenursprung.
Die daraus resultierende Ellipsengleichung nennt man Brennpunktsgleichung. Es gilt:

2y
— + = 1 | Translation um ¢ nach rechts
(93 —o? v
= T + E =1 | -a’b?
= V(r—c)+ad’y*=d’ |:a?
2
= g(x —c)+yi=b | Z—z = P nach (9) einsetzen
= ( c)? +y* =b" | (9) einsetzen
= Plaop iy map | 2o
= P =ap— - (18)

a

Fiir z = 0 erhalten wir wie gewiinscht:

2(18) P A\ -d+be V¥,
Yy = ap— C—p a——)=p -~ =pP— =D
a a a
Eine Translation um a nach rechts verlegt einen Scheitelpunkt der Ellipse in den Koor-
dinatenursprung. Die daraus resultierende Ellipsengleichung nennt man Scheitelpunkts-

gleichung. Es gilt:

2y
— + i 1 | Translation um a nach rechts
(x —a)® Y 272
= b (r—a)*+d’y* = d’® | Binomi
= b’2? — 2ab’z + a®V? + a*y® = a’b* | —a®b?
= b2® —2ab’z +a’y? =0 | —b*? + 2ab%x
= a’y? = 2ab’r — b*2* | :d®
b2 bQ b2
= y’=2—z——2° | L =pnach (9)
a a
=y’ =2pr— P (19)
a

11



Jela Kovacevic

Brennpunktlage in Fy Brennpunktlage in Fy

Abbildung 4: Die Brennpunktlage

Abbildung 5: Die Mittelpunktslage

X X

Scheitelpunktslage in Sy Scheitelpunktslage in Sy

Abbildung 6: Die Scheitelpunktslage

12



Severin Weber

5 Fahnchenkonstruktion der Ellipse

Aus der Parameterdarstellung des Einheitskreises {(cos(¢),sin(p)) : ¢ € R} gewinnt
man durch Streckung in z—Richtung um a und Streckung in y—Richtung um b die
entsprechende Darstellung aller Ellipsenpunkte {(a - cos(p),b - sin(¢)) : ¢ € R}. Fiir
einen beliebigen Winkel ¢ erhdlt man daher den entsprechenden Ellipsenpunkt P als
Schnittpunkt der senkrechten Geraden x = a - cos(y) und der waagerechten Geraden
y = b-sin(y). Die Geraden schneiden die konzentrischen Kreise um (0,0) mit Radien
b und a in den Punkten B bzw. A. Zu jedem Winkel ¢ l3sst sich also ein Punkt P der
Ellipse konstruieren.

N

-
N

Abbildung 7: Illustration der Fahnchen an drei Ellipsenpunkten Py, P> und Pj

13



Corentin Pfister

6 Dandelinsche Kugeln

Schneidet man die Oberflache eines Doppelkegels mit einer beliebigen Ebene im Raum,
so erhdlt man einen Kegelschnitt.

<
Circle Ellipse Parabola Hyperbola
g
,{( ‘\\.II \\Jj
I\\\-_ _/I
5 .

Abbildung 8: Vier verschiedene Kegelschnitte !

Wir betrachten den Spezialfall, in dem die gemeinsame Schnittmenge von Kegel und
Ebene eine nicht kreisformige geschlossene Kurve darstellt. Man stelle sich einen senk-
recht nach oben geoffneten Hohlkegel vor, in den nacheinander zuerst eine kleinere,
dann eine grossere Kugel gelegt werden, sodass diese sich nicht beriihren. Die kleinere
Kugel beriihrt den Kegel in einem Kreis ki, die grossere Kugel in einem Kreis ky. Im
Raum zwischen den Kugeln denke man sich nun eine zunachst waagerechte Ebene. Die
Ebene wird nun geneigt, bis sie die kleinere Kugel im Punkt £}, die grossere Kugel im
Punkt F, beriihrt.

Sei P ein beliebiger Punkt der gemeinsamen Schnittmenge von geneigter Ebene und
Kegel. Durch die Kegelspitze und P ist eine Mantellinie Dp festgelegt, die die Kreise
k1 bzw. ko in den Punkten A; bzw. A5 schneiden. Da von einem gegebenen Punkt alle
Tangentenabschnitte an eine Kugel gleich lang sind, gilt:

PF1 = PA1 und PF2 = PA2 (20)
Damit ist die Summe
PF,+ PFy, = PA; + PA; = A;A, unabhangig von P. (21)

Alle Punkte der gemeinsamen Schnittmenge von geneigter Ebene und Kegel erfiillen
beziiglich F} und F; die Bedingung der Gartnerkonstruktion. Daher ist diese Schnitt-
menge eine Ellipse mit den Brennpunkten F} und F5.

Lhttp://www.mathe-online.at, 15. Marz 2015
2http://accromath.ugam.ca/, 15. Mirz 2015
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Corentin Pfister

Abbildung 9: Die zwei dandelinschen Kugeln 2

15



Rino Sogno

7 Tangente einer Ellipse

e

Abbildung 10: Die Tangente im Punkt P an die Ellipse

Zur Bestimmung der Gleichung einer Tangente im Punkt P = (z0,yo) einer Ellipse
l6sen wir zunichst (1) nach y? auf und erhalten:

2 _ 2 _ b—2x2 |
vy = a2 dx
b2
= 2y =22 |:2
a
b? :
= y=— f | P einsetzen
a”y
’ b? To . . . .
= y' = ——; — ist die Tangentensteigung im Punkt P (22)
a” Yo

Wir setzen nun die Koordinaten von P in die allgemeine Form einer Tangentengleichung
d.h. einer linearen Gleichung y = mx + ¢ ein und erhalten:
b2 3

Yo=——%—To+q |+z2L
a

a® Yo

Yo
b? 22
= ¢=4yo+— — | Einsetzen
a=y
b x b? x?
= y:——2—0~:1:+y0+—2—0 (23)
as Yo a= Yo
=m =q

16



Rino Sogno

Eine alternative Tangentenbestimmung beruht auf der bei Kegelschnitten universell
einsetzbaren Methode des Polarisierens. Wir erldutern die Begriffe Pol und Polare so-
wie ihren mathematischen Zusammenhang am Beispiel des Kreises.

Gegeben sei ein Kreis k und ein Punkt P in der Ebene. Dann liegt P entweder ausser-
halb, auf oder innerhalb des Kreises.

1. Fall: P liegt ausserhalb von k
Die Tangenten an k durch P beriihren k in den Punkten )1, Q). Man nennt die Gerade
durch )1, Q)5 die Polare zum Pol P beziiglich k.

2.Fall: P liegt auf k&
In diesem Fall existiert nur noch eine Tangente an k durch P. Liegt P auf dem Kreis,
so ist die Polare zum Pol P identisch mit der Tangente durch P.

3. Fall: P liegt innerhalb von k

Zwei beliebige Sekanten durch P schneiden k in den Punkten Q,Qs und Q3, Q4.
Die Tangenten an k durch @, ()2 schneiden sich im Punkt R;, die Tangenten an k
durch @3, Q4 schneiden sich im Punkt R;. Man nennt nun die Gerade durch Ry, R,
die Polare zum Pol P beziiglich &.

<

[x

1. Fall 2. Fall 3. Fall
Abbildung 11: Das Polarisieren am Kreis
Zur Herleitung der Tangentengleichung (2. Fall) sei k£ mit Mittelpunkt (0, 0) und Radius
r gegeben. P = (z,yo) liege auf K und Q) = (x,y) sei ein beliebiger Punkt auf der
Tangente durch P an k.

Da der Radiusvektor M P senkrecht auf dem Richtungsvektor ﬁé der Tangenten steht,
gilt fiir das Skalarprodukt:

MP-PQ =0 (24)

17



Rino Sogno

Abbildung 12: Polarisation des Kreises mit P

Andererseits liefert die Kreisbedingung:
(3P) = (25)
Addiert man die linke bzw. rechte Seite von (25) in (24), so erhdlt man:
MP - Fé + (W>2 = r? | Distributivgesetz
=~ MP-(PO+ MP) — 2 | Vektoraddition

-~ MP. MQ =r* | M, P,Q einsetzen
= zox + yoy =12 (26)

Im Fall der Tangentengleichung an eine Ellipse verfahren wir analog. Dazu setzen wir
den Punkt P = (g, yo) gemass (26) in (1) ein und erhalten:

ToZ Yoy - 2192
W tp =t et
= zoxb® + yoya® = a’b* | —xexb?
= yoya® = —zozb® + a®b* | : (a’yo)
b? b?
a” Yo Yo

18



Rino Sogno

Vergleicht man (27) mit (23), so geniigt es zu zeigen, dass ¢ =

2 . .
Z—O ist. Es gilt

b2

q=— 1(23)
Yo
vk b? Yo

= - = _ 2
ot Yo Yo b?

Ty Yo :
& — +5 =1 |ist erfiillt wegen (1)

(28)

Wir erhalten also eine Tangentengleichung (27) im Punkt P einer Ellipse durch die
Berechnung der Polaren zum Punkt P.

19



8 Brennpunkteigenschaft

Nathanael Gall

Y

my Q Irq
.

X

%
/

Abbildung 13: Gegeben sei ein Punkt @ auf einem Kreis (schwarz) k mit Mittelpunkt M
sowie ein Punkt F' im Inneren von k. mgp sei die Mittelsenkrechte (griin) der Strecke QF'.
Ein Punkt P der zugehdrigen Ellipse (rot) ist der Schnittpunkt von mgp mit der Geraden

durch M und Q.

Gemadss Abbildung 13 lassen sich alle Punkte einer Ellipse mit Hilfe eines Leitkreises &
und einem inneren Kreispunkt F" konstruieren. Die Mittelsenkrechte mgp ist dabei die

Tangente an die Ellipse im Punkt P.

Denn angenommen, es gabe einen weiteren Ellipsenpunkt P’ auf mgr. Bezeichnet '

20



Nathanael Gall

den entsprechenden Lotfusspunkt von P’ auf k, so miisste gelten:
FP =QP

Da P’ € mgr hat P’ denselben Abstand zu F' und zu @), also:
FP =QP

Daraus folgt QP’ = Q'P’ d.h. die Lange zweier Lote vom Punkt P’ auf den Kreis k
sind gleich. Dies kann nur fiir den Kreismittelpunkt M gelten. Da M einen Brennpunkt
der Ellipse darstellt, ist A/ = P’ unméglich. Also beriihrt die Mittelsenkrechte mgp
die Ellipse in genau einem Punkt und ist demnach eine Tangente.

Die Brennpunkteigenschaft einer Ellipse bedeutet, dass ein vom Punkt I einfallender
Strahl im Punkt P so reflektiert wird, dass der ausfallende Strahl durch M verl3uft.
Gemass dem physikalischen Reflexionsgesetz Einfallswinkel gleich Ausfallwinkel muss
man zeigen, dass die Geraden gpr und gpps mit der Tangenten mgr den gleichen
Winkel einschliessen. Dies sieht man so: Die Dreiecke PF'N und PQN stimmen in
drei Seiten iiberein. Es gilt FN = NQ, da N € mgp. Ferner ist P so gewihlt, das
PQ = PF ist. Die dritte Seite PN ist schliesslich beiden Dreiecken gemeinsam. Daher
ist der Einfallswinkel <<(FPN) gleich dem Winkel <(QPN). Der Ausfallwinkel ent-
spricht dann dem zu <(QPN) gehdrigen, gleich grossen Scheitelwinkel.

Man verwendet diese Eigenschaft der Ellipse unter anderem in der Lichtschweisstech-
nik, bei der die Warmestrahlung einer Infrarotquelle im einen Brennpunkt durch einen
elliptischen Reflektor im anderen Brennpunkt fokussiert wird.

21



Lucas Habersaat

9 Leitgeradendefinition einer Ellipse

Ein Kegelschnitt ist der geometrische Ort aller Punkte, die von einer festen Geraden
den e—fachen Abstand wie von einem festen Punkt haben. Man nennt die feste Gerade
die Leitgerade und den festen Punkt Brennpunkt des Kegelschnitts. Ist 0 < ¢ < 1,
so erhdlt man eine Ellipse. Wir legen den festen Punkt F, in den Ursprung eines
kartesischen Koordinatensystems und drehen dessen Achsen, so dass die Leitgerade [
parallel zur y—Achse im Abstand d liegt. Der Punkt P = (x,y) besitze den Abstand
d(P,1) zur Leitgeraden und r := d(P, F') zum Brennpunkt. Nach Voraussetzung gilt
also:

e-d(P,l) =r | Abstandsbedingung einsetzen

= e¢-(d—z)=r |x=rcos(p)
= ed—er cos(p) =r | nach r aufldsen
ed .
= r=-———— |e&d=p einsetzen
1 + e cos(p)
= P | Polarform der Ellipsengleichung geméss (32)  (29)

Tt e cos(p)

d(pP,l

To

Abbildung 14: Die Ellipse und ihre Leitgerade



Tennessee von Streng

10 Polarform der Ellipsengleichung

Gegeben sei eine Ellipse mit grosser Halbachse a und den Brennpunkten Fi, F; im

Abstand 2c. P sei ein beliebiger Punkt auf der Ellipse mit F5 P = r. Dann gilt:

F1P—|—F2P:2a ‘—T:FQP

= [P =2a—r | Quadrieren
= (W)2 = 4a* — dar +r*
Andererseits folgt im Dreieck F} PFy mit Hilfe des Kosinussatzes:
(W)2 =1 + 4% — 4rccos(180° — ) | Additionstheorem
= (W)z = 1%+ 4c* + drccos(p)
Gleichsetzen von (30) und (31) liefert:

4a® — 4ar +r* = r* +4c* + drccos(p) | —r?, 14
2 2

= a’—ar=c+rceos(p) | +ar—c
= a’—c® =ar+rccos(p) | (3), ar ausklammern
5 c
= b =ar- (1+—Cos(g0)) |1 a
a
b? c
= = =r-(1+cos(2)) | (5). (9)
= p=r-(l+ecos(p)) |:14¢ccos(p)
p
= r=——"
"7 + £ cos(p)
y
P
:
i X
Fy F2

Abbildung 15: Brennpunktabstand r und Bahnwinkel ¢ einer Ellipse

(31)

(32)



Matthias Blum

11 Kartesische Form der Ellipsengleichung

Gegeben sei die Menge aller Punkte P = (z,y) = (r cos(p), rsin(y)) in der Ebene,
die die Gleichung (32) erfiillen. Als Brennpunkte bezeichnen wir die Punkte F, = (0, 0)
und F; = (—2¢,0). Dann folgt aus dem Satz von Pythagoras:
(FlP)2 = (2c +rcos(p))? + (rsin(p))? | Binomi
= (F’lP)2 = 4c® + 4er cos(ip) + 12 cos®(¢) + r?sin®(¢) | ausklammern
= (FlP)2 = 4¢* + 4er cos(p) + 1 (33)
Ware P ein Punkt auf der Ellipse, so folgt aus der Gartnerbedingung:
(FiP)” = 4a® — dar + 12 (34)
p

Die Grossen a und ¢ sind durch p und € bestimmt. Gemass Gleichung (8) gilt a = %,

woraus mit Gleichung (5) ¢ = ea = % folgt. Zu zeigen ist demnach:

4¢® + der cos(p) + 1 = 4a® — dar +r* | —r?, 1 4
) 2

& Adercos(p)=a*—ar |:a, (5)
& ectercos(p)=a—r |+r—ec
< r-(l+ecos(p)) =a—cc |(5)
& 7r-(1+ecos(p)) =a—ce’a |(8)
& r-(14+ecos(p)=p |:(1+ecos(p))
p
" 1 + € cos(yp) (35)
p y
;
)
. X
3 F

Abbildung 16: Der Punkt P = (r cos(p),sin(yp)) erfiillt die Gartnerbedingung

24



Nathanael Gall

12 Leitkreis einer Ellipse

<

9Irq
Q
M

Abbildung 17: Leitkreis der Ellipse

X

Eine Ellipse ist der geometrische Ort aller Punkte P, die von einer Kreislinie & (Leit-
kreis) und einem Punkt F' im Inneren von k denselben Abstand besitzen.

Unter dem Abstand des Punktes P zur Kreislinie k versteht man den kiirzesten Abstand
d.h. das Lot von P auf k. Bezeichnet () den Fusspunkt des Lotes auf k, so liegt P
auf der Geraden gpj; durch den Kreismittelpunkt M von k und (), da jedes Lot durch
einen Kreispunkt notwendig auch durch den Kreismittelpunkt verlauft. Alle Punkte,
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die von () und F denselben Abstand haben liegen auf der Mittelsenkrechten mgp der
Strecke QF. Der gesuchte Punkt P ist demnach der Schnittpunkt der Geraden gpy,
mit mqr.

Wir wollen zuerst die Existenz dieses Schnittpunktes nachweisen. Im Allgemeinen be-
sitzen zwei Geraden in der Ebene entweder genau einen, keinen oder unendlich viele
Schnittpunkte. Im letzten und vorletzten Fall sind die beiden Geraden mindestens par-
allel. Wir fiihren die Annahme gpy; || mgr wie folgt zu einem Widerspruch: Die Gerade
grq steht senkrecht auf mgp d.h. grg steht senkrecht auf gpy;. Daher ware gp( ei-
ne Tangente an den Kreis im Punkt (). Demnach miisste I’ entweder ausserhalb des
Kreises liegen oder mit () zusammenfallen, im Widerspruch zur Voraussetzung, dass F’
im Kreisinneren liegt.

Die Geraden gpas und mgp sind demnach nicht parallel und besitzen daher genau
einen Schnittpunkt.

Nun zeigen wir noch, dass die so konstruierten Schnittpunkte der Geraden gpj; und
mqr der Gartnerbedingung geniigen. Nach Definition der Mittelsenkrechten gilt zu-
nachst:

FP+PM=QP+ PM | M,P,Q kollinear
& FP+PM=QM |r:= M unabhingig von P
& FP+PM=r (36)
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13 Ellipsenkonstruktion

Von einer Ellipse sei ein Brennpunkt F5, der Wert der grossen Halbachse a, ein Punkt
P und die Tangente in P an die Ellipse gegeben. Dann lasst sich der andere Brenpunkt

Fy wie folgt konstruieren:
e Zeichne die Gerade g durch F; und P.
e Trage auf g im Abstand 2a von F), den Punkt R ab.

e Die Spiegelung von R an der Tangenten ist der gesuchte Brennpunkt Fj.

Abbildung 18: Beispiel einer Ellipsenkonstruktion
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