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1 Strategie und grundlegende Definitionen

Wir untersuchen die Gleichung

A · x2 + 2 · B · x · y + C · y2 + 2 ·D · x + 2 · E · y + F = 0 (1)

für x, y ∈ R. Es sollen dabei nicht A, B und C gleichzeitig null sein.

Es zeigt sich, dass die folgenden Terme ausreichen, um eine vollständige Fallunterscheidung vorzu-
nehmen:

• DET =

∣∣∣∣∣∣
A B D

B C E

D E F

∣∣∣∣∣∣ = A · C · F + 2 · B ·D · E − C ·D2 − A · E2 − F · B2
• det =

∣∣∣∣A B

B C

∣∣∣∣ = A · C − B2
• spur = A+ C

• A und C selber

Wir werden zeigen, dass die folgende Tabelle eine vollständige Gliederung aller möglichen Fälle
darstellt. Die Lösungsmenge von (1) geht immer durch eine Drehung oder eine Drehstreckung
und eine Translation aus der bekannten Lösungsmenge einer der Gleichungen in der vierten Spalte
hervor. In den ersten drei Spalten stehen die Kriterien, welche ausreichen zu entscheiden, welcher
Fall konkret vorliegt.
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Bei det > 0 sprechen wir vom elliptischen Fall, bei det = 0 vom parabolischen Fall und bei det < 0
vom hyperbolischen Fall.

Das Vorgehen ist in allen Fällen dasselbe: Wir nehmen an, dass (1) äquivalent ist zu einer bestimm-
ten Gleichung unserer Liste. Daraus leiten wir eine Reihe von Gleichungen ab, welche die Gestalt
der Kurve und die Abbildung von (x/y) auf (x ′/y ′) genau beschreiben. Schliesslich zeigen wir, dass
alle diese Gleichungen auch erfüllt werden können, wenn nur die Voraussetzungen in den ersten drei
Spalten erfüllt sind.

In allen Fällen sollen sämtliche Details der Lösungskurve von (1) explizit berechnet werden. Dazu
werden noch einige weitere Terme definiert:

• k = signum(−DET)

• λ1 =
1

2
·
(
A+ C + k ·

√
(A− C)2 + 4 · B2

)
λ2 =

1

2
·
(
A+ C − k ·

√
(A− C)2 + 4 · B2

)
λ1 und λ2 sind die beiden Eigenwerte der symmetrischen Matrix

(
A B

B C

)
.

Aufgrund der Definition gilt det = λ1 · λ2 und spur = λ1 + λ2. Die zugehörigen Eigenvektoren
werden in dieser Darstellung nicht benötigt.

Zwei weitere Grössen tauchen aber wiederholt auf, die wir aus der Entwicklung von DET nach der
letzten Spalte gewinnen:

DET =

∣∣∣∣∣∣
A B D

B C E

D E F

∣∣∣∣∣∣ = D ·
∣∣∣∣B C

D E

∣∣∣∣− E · ∣∣∣∣A B

D E

∣∣∣∣+ F · ∣∣∣∣A B

B C

∣∣∣∣
= D · (B · E − C ·D)− E · (A · E − B ·D) + F · (A · C − B2)

= D · h1 + E · h2 + F · det

mit h1 = B · E − C ·D und h2 = B ·D − A · E.
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2 Die elliptischen Fälle 1 , 2 und 3

Die quadratische Gleichung

A · x2 + 2 · B · x · y + C · y2 + 2 ·D · x + 2 · E · y + F = 0 (1)

sei also äquivalent zu

(x ′)2

a2
+
(y ′)2

b2
= κ (2)

mit κ ∈ {−1, 0, 1} und a2 ≥ b2 > 0.

Wir wollen also die Fälle 1 , 2 und 3 gleichzeitig behandeln.

Es soll also eine Translation und eine Drehung geben, welche (x/y) auf (x ′/y ′) abbilden, sodass
(x/y) der Gleichung (1) genau dann genügt, wenn (x ′/y ′) eine Lösung von (2) ist:(

x ′

y ′

)
=

(
d −e
e d

)
·
(
x − u
y − v

)
=

(
d · x − d · u − e · y + e · v
e · x − e · u + d · y − d · v

)
(x/y) soll also genau dann eine Lösung von (1) sein, wenn gilt

b2 · (d · x − d · u − e · y + e · v)2 + a2 · (e · x − e · u + d · y − d · v)2 = κ · a2 · b2 (3)

Multipliziert man (3) aus und vergleicht die Koëffizienten mit (1), so erhält man für einen beliebigen
Skalenfaktor µ ̸= 0 die Gleichungen

I µ · A = a2 · e2 + b2 · d2

II µ · B = (a2 − b2) · d · e

III µ · C = a2 · d2 + b2 · e2

IV µ ·D = b2 · d · e · v − b2 · d2 · u − a2 · e2 · u − a2 · d · e · v

V µ · E = b2 · d · e · u − b2 · e2 · v − a2 · d · e · u − a2 · d2 · v

VI µ · F = b2 · d2 · u2 − 2 · b2 · d · e · u · v + b2 · e2 · v2 + a2 · e2 · u2
+ 2 · a2 · d · e · u · v + a2 · d2 · v2 − κ · a2 · b2

nebst

VII e2 + d2 = 1

Mithilfe dieser sieben Gleichungen werden wir a, b, d , e, u, v und µ durch die Koëffizienten der
Gleichung (1) ausdrücken.
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I, III und VII liefern

µ · A+ µ · C = a2 · (e2 + d2) + b2 · (e2 + d2) = a2 + b2

µ · spur = a2 + b2 ; spur =
1

µ
· a2 +

1

µ
· b2 (4)

I, II, III und VII liefern

µ2 · det = µ · A · µ · C − (µ · B)2

= (a2 · e2 + b2 · d2) · (a2 · d2 + b2 · e2)− (a2 − b2)2 · d2 · e2

=������
a4 · e2 · d2 + a2 · b2 · e4 + a2 · b2 · d4 +hhhhhhb4 · e2 · d2−

(������
a4 · d2 · e2 − 2 · a2 · b2 · d2 · e2 +hhhhhhb4 · d2 · e2)

= a2 · b2 · (e4 + d4 + 2 · d2 · e2)
= a2 · b2 · (e2 + d2)2 = a2 · b2 · (1)2 = a2 · b2

det =
1

µ
· a2 ·

1

µ
· b2 (5)

(4) und (5) bedeuten zusammen, dass gilt

λ1 =
1

µ
· a2 und λ2 =

1

µ
· b2 (6)

Beide Eigenvektoren sind verschieden von null, da µ ̸= 0 und a2 ≥ b2 > 0. λ1 und λ2 haben
dasselbe Vorzeichen, es gilt daher

spur = λ1 + λ2 ̸= 0 und det = λ1 · λ2 > 0 (7)

Dieses „det > 0“ ist charakteristisch für den elliptischen Fall.

Es ist |λ1| ≥ |λ2| > 0. Wir werden später sehen, dass das zu unserer expliziten Definition der
beiden Eigenwerte passt.

Im Spezialfall des Kreises gilt a2 = b2. Mit I, II und III sieht man schnell, dass dies gleichbedeutend
ist mit

B = 0 und A = C

Die Rotation ist dann überflüssig, man kann d = 1 und e = 0 setzen.

Ganz elementar, also ohne partielle Ableitungen, lassen sich aus unseren Gleichungen die Parameter
u und v der Translation bestimmen. Wir benützen I, II und III um die Gleichungen IV und V neu
zu schreiben:

IV µ ·D = (−a2 · e2 − b2 · d2) · u + (b2 − a2) · d · e · v = −µ · A · u − µ · B · v

V µ · E = (−b2 · e2 − a2 · d2) · v + (b2 − a2) · d · e · u = −µ · B · u − µ · C · v
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Nach Division durch −µ erhalten wir

A · u + B · v = −D
B · u + C · v = −E oder

(
A B

B C

)
·
(
u

v

)
=

(
−D
−E

)

Nach (7) gilt det ̸= 0, es existiert also die inverse Matrix. Multipliziert man mit dieser von links,
erhält man (

u

v

)
=

1

A · C − B2 ·
(
C −B
−B A

)
·
(
−D
−E

)
=
1

det
·
(
B · E − C ·D
B ·D − A · E

)
Mit den Abkürzungen h1 = B · E − C ·D und h2 = B ·D − A · E gilt also

M = (u/v) =

(
h1
det

h2
det

)
(8)

Ist κ = 1, so stellt M den Mittelpunkt der Ellipse dar.
Ist κ = 0, so ist M die einzige Lösung von (1), da (0/0) dann die einzige Lösung von(2) ist.
Und wenn κ = −1 gilt, hat (2) keine Lösungen, weshalb dann auch (1) keine Lösungen hat.

Nun betrachten wir die Gleichung VI:

µ · F = (b2 · d2 + a2 · e2) · u2 + (b2 · e2 + a2 · d2) · v2

+ 2 · (a2 − b2) · d · e · u · v − κ · a2 · b2

= µ · A · u2 + µ · C · v2 + µ · 2 · B · u · v − κ · a2 · b2

Somit gilt

1

µ
· κ · a2 · b2 = A · u2 + C · v2 + 2 · B · u · v − F

Setzt man die Werte ein, die wir in (8) für u und v gefunden haben, dann erhält man nach längerer
Rechnung

κ · a2 · b2 = µ ·
−DET

det
(9)

Diese Gleichung zeigt, dass κ genau dann null ist, wenn auch DET null ist. Damit sind die Kriterien

für die Zuordnung zum Fall 3 bewiesen.

Mit (9) können wir die Gleichung (3) neu schreiben:

b2 · (x ′)2 + a2 · (y ′)2 = κ · a2 · b2 = µ ·
−DET

det
(10)
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Mit (6) erhalten wir daraus

µ · λ2 · (x ′)2 + µ · λ1 · (y ′)2 = µ ·
−DET

det

und nach Division durch µ

λ2 · (x ′)2 + λ1 · (y ′)2 =
−DET

det
(11)

Ist DET = 0, so ist die einzige Lösung von (11) der Punkt (x ′/y ′) = (0/0); einzige Lösung von
(1) ist damit der Punkt M = (u/v). Es ist ja

(
x

y

)
=

(
d e

−e d

)
·
(
x ′

y ′

)
+

(
u

v

)
(12)

Hat DET dasselbe Vorzeichen wie λ1, λ2 und die Spur, so hat (11) keine Lösungen. Dann ist

DET · spur > 0 und wir sind im Fall 2 . Die Kriterien für diesen Fall sind somit auch bewiesen.

(11) und (1) stellen also nur im Falle von DET · spur < 0 eine Ellipse dar. Wir wollen noch die
Kennzahlen dieser Ellipse bestimmen:

Multipliziert man (11) mit
−det
DET

und vergleicht mit der Normalform der Ellipsengleichung

(x ′)2

a2
+
(y ′)2

b2
= 1

so erhält man

a2 =
−DET
det · λ2

=
−DET
λ1 · (λ2)2

(13.1)

b2 =
−DET
det · λ1

=
−DET
(λ1)2 · λ2

(13.2)

Daraus erhalten wir weiter

c2 = a2 − b2 =
−DET

det
·
(
1

λ2
−
1

λ1

)
=
−DET · (λ1 − λ2)

det2
(14)

Für die Exzentrizität ϵ ergibt sich daraus

ϵ2 =
c2

a2
=
(λ1 − λ2) · λ2

det
=
(λ1 − λ2) ·ZZλ2
λ1 ·ZZλ2

somit

ϵ =

√
1−
λ2
λ1

(15)
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Für das Quermass p resultiert

p2 =

(
b2

a

)2
=
b4

a2
=
−DET · λ2
det · (λ1)2

=
−DET
(λ1)3

oder

p =

√
−DET
(λ1)3

(16)

Es wird sich herausstellen, dass die Formeln (15) und (16) auch für Parabeln und Hyperbeln gelten.
Diese Formeln sind neu, bis jetzt habe ich sie jedenfalls in der Literatur oder den bekannten For-
melsammlungen nicht angetroffen. Man kann sie auch nur dann finden, wenn man explizit festlegt,
welches der Eigenwert λ1 und welches der Eigenwert λ2 sein soll!

Im interessanten Fall von DET ̸= 0 können wir jetzt auch den Skalenfaktor µ berechnen:

Aus (6) folgt

µ =
a2

λ1
=

−DET
det · λ2 · λ1

=
−DET
det2

(17)

Damit sind κ, a2, b2, u, v und µ so bestimmt, dass I bis VII erfüllt sind und die Lösungsmenge von
(2) mit der Abbildung (12) auf die Lösungsmenge von (1) abgebildet wird. Es fehlen nur noch die
Werte von d und e in der Matrix der Rotation.

Diese Werte sind aber schon durch die Gleichungen I, II und VII bestimmt. Allerdings muss dabei
der Spezialfall B = 0 gesondert behandelt werden. Machen wir das zuerst:

Es sei also B = 0. Wegen det = A ·C−B2 = A ·C > 0 folgt dann A ̸= 0 und C ̸= 0. Wir können
daher (1) neu schreiben als

A ·
(
x +
D

A

)2
+ C ·

(
y +
E

C

)2
= −F +

D2

A
+
E2

C

oder

A · (x ′)2 + C · (y ′)2 =
−F · A · C +D2 · C + E2 · A

A · C =
! −DET

det
(18)

Das ist schon eine Ellipsengleichung, falls DET · spur < 0. (18) ist äquivalent zu

(x ′)2

a2
+
(y ′)2

b2
= 1

mit a2 =
−DET
det · A und b2 =

−DET
det · C

9



Falls a2 ≥ b2 gilt, also falls |A| ≤ |C|, braucht es keine Drehung, wir setzen dann d = 1 und
e = 0. Andernfalls braucht es noch eine Drehung um 90◦ (egal in welcher Richtung), wir setzen
dann d = 0 und e = 1. Zusammengefasst:

(B = 0 und |A| ≤ |C| ) =⇒ ( d = 1 und e = 0 ) (19.1)

(B = 0 und |A| > |C| ) =⇒ ( d = 0 und e = 1 ) (19.2)

Es gilt nun noch den allgemeinen Fall mit B ̸= 0 abzuhandeln.

Ist B ̸= 0 dann gilt auch

• d ̸= 0 und e ̸= 0 und a2 ̸= b2 wegen II

• A ̸= 0 und C ̸= 0 wegen A · C − B2 > 0

• λ1 ̸= λ2 aufgrund der Definition

Wir wählen dann d = cos(φ) > 0, da wir eine Ellipse aus Symmetriegründen immer nur um einen
spitzen Winkel drehen müssen, um sie in Hauptachsenlage zu bringen. Die Drehung um 90◦ haben
wir im Fall B = 0 schon erledigt.

Es genügt also, d2 zu berechnen, wofür wir nur I und VII brauchen:

µ · A = a2 · (1− d2) + b2 · d2 = a2 + (b2 − a2) · d2

Daraus mit (6)

d2 =
µ · A− a2

b2 − a2 =
µ · A− µ · λ1
µ · λ2 − µ · λ1

=
A− λ1
λ2 − λ1

d =

√
λ1 − A
λ1 − λ2

(20.1)

Die Gleichung II liefert uns dazu noch den Wert von e mit dem richtigen Vorzeichen:

e =
µ · B

(a2 − b2) · d =
µ · B

µ · (λ1 − λ2) · d
=

B

d · (λ1 − λ2)
(20.2)
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Damit ist jetzt folgendes bewiesen:

i) Gilt (1) ⇐⇒ 1 , dann beschreibt (1) eine Ellipse mit Mittelpunkt M = (u/v) und den
Halbachsen a und b. Die Richtung der Achsen wird durch die Parameter d und e der Rotation
beschrieben.
In diesem Fall gilt det > 0, DET ̸= 0 und DET · spur < 0.

ii) Gilt (1)⇐⇒ 2 , dann ist die Lösungsmenge von (1) leer.
Es gilt dann det > 0, DET ̸= 0 und DET · spur > 0.

iii) Gilt (1)⇐⇒ 3 , dann besteht die Lösungsmenge aus dem einzigen Punkt M = (u/v).
Dann gilt det > 0 und DET = 0.

Nun müssen wir noch die Umkehrung zeigen:

i’)
(
det > 0 und DET ̸= 0 und DET · spur < 0

)
=⇒

(
(1)⇐⇒ 1

)
ii’)

(
det > 0 und DET ̸= 0 und DET · spur > 0

)
=⇒

(
(1)⇐⇒ 2

)
iii’)

(
det > 0 und DET = 0

)
=⇒

(
(1)⇐⇒ 3

)
Der Beweis ist in allen drei Fällen konstruktiv. Wir zeigen, wie man im jeweiligen Fall a, b, d , e, µ,

λ1, λ2, u und v bestimmt, sodass I bis VII erfüllt sind und somit die Lösungsmenge von 1 , 2

oder 3 durch die Abbildung (12) auf die Lösungsmenge von (1) abgebildet wird.

In den Fällen 1 und 2 , also wenn gilt det > 0 und DET ̸= 0, gehe man wie folgt vor:

1. Bestimme λ1 und λ2 nach unseren Definitionen

2. Bestimme µ nach (17)

3. Bestimme u und v nach (8)

4. Bestimme a2 und b2 mit (13)

5. Bestimme d und e nach (19) oder (20)

6. Zeige dass mit diesen Werten I bis VII erfüllt sind!

Die Beweise zu 6. lassen sich mühelos durchführen, sie würden aber zwei bis drei weitere Seiten

beanspruchen und werden hier weggelassen. Es folgt nun die Äquivalenz von (1) zu 1 resp. 2 ,
je nach dem Vorzeichen von DET · spur.
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Im Fall 3 , also wenn gilt det > 0 und DET = 0, muss man leicht anders vorgehen:

1. Bestimme λ1 und λ2 nach unseren Definitionen

2. Bestimme u und v nach (8)

3. Bestimme d und e nach (19) oder (20)

4. Setze µ = λ1, a2 = µ · λ1 = (λ1)2 und b2 = µ · λ2 = λ1 · λ2

5. Zeige dass mit diesen Werten I bis VII erfüllt sind!

Mit (10) folgt dann die Äquivalenz von (1) und 3 . Die Beweise zu 5. sind auch hier harmlos.

Sie können leicht selber prüfen, ob all die hergeleiteten Formeln stimmen: Laden Sie die GeoGebra-
Datei „ellipt_hyperbol.ggb“ von meiner Webseite „www.physastromath.ch/mathematik/geogebra“
herunter. Sie können dann mit Schiebereglern die Parameter A bis F der quadratischen Gleichung
(1) einstellen. Der zugehörige Kegelschnitt wird gezeichnet, zusammen mit den Brennpunkten, den
Hauptachsen, den Scheitelpunkten, den Leitlinien usw. Diese Stücke werden mit den Formeln in
diesem Kapitel berechnet, wie Sie im Algebra-Teil der GeoGebra-Datei sehen können.

Die Variablennamen sind wie in den Abschnitten 2 bis 7 des Skriptums „Conics_01“ gewählt. Sie
sind identisch mit den Namen, die wir in diesem Skriptum verwendet haben. In wenigen Fällen gibt
es Abweichungen dazu:

p
q
quer1
quer2
eps1
eps2

der erste Eigenwert λ1
der zweite Eigenwert λ2
das Quermass p des Kegelschnitts
das Quermass p des Kegelschnitts
die numerische Exzentrizität ε
die numerische Exzentrizität ε

Einige Werte wie zum Beispiel die Exzentrizität und die spur werden zur Kontrolle auf verschiedene
Arten berechnet. Wenn Sie den Bereich oder die Feinheit der Schritte bei den Schiebereglern A
bis F ändern wollen, brauchen Sie nur mit der rechten Maustaste darauf zu klicken. Es klappt ein
Kontext-Menu auf; wählen Sie dort den untersten Eintrag „Eigenschaften“ und Sie können alle
Vorgaben abändern.

Die folgende Seite zeigt ein elliptisches Beispiel:
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Zum Abschluss dieses Kapitels wollen wir noch eine hübsche (aber bereits bekannte) Formel für
den Drehwinkel der Rotation herleiten.

Nach (12), (19) und (20) gilt für den Winkel φ der Rücktransformation

cos (φ) = d , sin (φ) = −e, tan (φ) =
−e
d

Die Goniometrie lehrt uns, dass für den Tangens des doppelten Winkels gilt

tan (2 · φ) =
2 · tan (φ)
1− tan2(φ) =

−2 ·
e

d

1−
e2

d2

=
2 · d · e
e2 − d2 (21)

Aus der Gleichung II holen wir

2 · d · e =
2 · µ · B
a2 − b2 =

µ

a2 − b2 · 2 · B (22)

Subtrahieren wir III von I, erhalten wir

µ · A− µ · C = (a2 − b2) · (e2 − d2)

also

(e2 − d2) =
µ · (A− C)
a2 − b2 =

µ

a2 − b2 · (A− C) (23)

Setzen wir (22) und (23) in (21) ein, ergibt sich

tan (2 · φ) =
2 · B
A− C (24)

Die Formel gilt auch für B = 0, dann ist φ = 0◦ oder φ = 90◦ nach (19), somit 2 · φ = 0◦ oder
2 · φ = 180◦. Für A = C muss die Formel versagen, dann ist ja nach (23) e2 = d2. Für B ̸= 0
bedeutet das einen Winkel φ von ±45◦, somit ist 2 ·φ = ±90◦ und der Tangenswert davon existiert
nicht.
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3 Der parabolische Fall 4

Die quadratische Gleichung

A · x2 + 2 · B · x · y + C · y2 + 2 ·D · x + 2 · E · y + F = 0 (1)

sei nun äquivalent zu

y ′ = a · (x ′)2, a > 0 (25)

Die Abbildung (
x ′

y ′

)
=

(
d −e
e d

)
·
(
x − u
y − v

)
(26)

soll die Lösungsmenge von (1) auf diejenige von (25) abbilden. Dabei ist S = (u/v) der Scheitel-
punkt der Lösungsparabel von (1):

x

y

b

b

b

b

S′ = (0/0)

F ′

(25)

S = (u/v)

F

(1)

φ

Nach (26) gilt

x ′ = d · x − e · y − d · u + e · v und y ′ = e · x + d · y − e · u − d · v
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Eingesetzt in (25) erhalten wir

a · (d2 · u2 − 2 · d · e · u · v − 2 · d2 · u · x + 2 · d · e · u · y + e2 · v2 + 2 · d · e · v · x − 2 · e2 · v · y +
d2 · x2 − 2 · d · e · x · y + e2 · y2) = e · x + d · y − e · u − d · v

Der Koëffizientenvergleich mit (1) liefert die Gleichungen

I µ · A = a · d2

II µ · B = −a · d · e

III µ · C = −a · e2

IV µ ·D = −a · d2 · u + a · d · e · v −
1

2
· e

V µ · E = a · d · e · u − a · e2 · v −
1

2
· d

VI µ · F = a · d2 · u2 − 2 · a · d · e · u · v + a · e2 · v2 + e · u + d · v

VII e2 + d2 = 1

Aus diesen Gleichungen ziehen wir nun eine Reihe von Folgerungen:

a) µ2 · det = µ2 · (A · C − B2) = µ · A · µ · C − (µ · B)2 =
a · d2 · a · e2 − (−a · d · e)2 = a2 · d2 · e2 − a2 · d2 · e2 = 0

Die Gleichungen I - III verlangen also, dass bei Parabeln zwingend gilt

det = A · C − B2 = 0 (27)

b) Wegen det = 0 folgt λ1 · λ2 = 0. Da nicht beide Eigenwerte null sein können, ist genau einer
der beiden von null verschieden. Dieser Eigenwert ist dann gleich der Spur A+C, es gilt also

spur = A+ C = λ1 + λ2 ̸= 0 (28)

c) Dass die Spur nicht null sein kann, zeigt auch die folgende Rechnung:

µ · (A+ C) = µ · A+ µ · C = a · d2 + a · e2 = a · (d2 + e2) = a > 0

Also

µ · (A+ C) = a (29)
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d) Aus (25) und I bis III holen wir noch

d · e =
−µ · B
a

=
−µ · B
µ · (A+ C) =

−B
A+ C

d2 =
µ · A
a
=

µ · A
µ · (A+ C) =

A

A+ C

e2 =
µ · C
a
=

µ · C
µ · (A+ C) =

C

A+ C

(30.1)

(30.2)

(30.3)

e) II, III und IV liefern zusammen mit VII

µ2 · (B · E − C ·D) = µ · B · µ · E − µ · C · µ ·D

= −a · d · e ·
[
a · d · e · u − a · e2 · v −

1

2
· d

]
− a · e2 ·

[
−a · d2 · u + a · d · e · v −

1

2
· e

]
= −(((((((
a2 · d2 · e2 · u +

hhhhhhha2 · d · e3 · v +
1

2
· a · d2 · e +(((((((

a2 · d2 · e2 · u −
hhhhhhha2 · d · e3 · v +

1

2
· a · e3

=
1

2
· a · e · (d2 + e2) =

1

2
· a · e

a · e = 2 · µ2 · (B · E − C ·D) = 2 · µ2 · h1 (31)

f) Genau so erhalten wir

µ2 · (B ·D − A · E) = µ · B · µ ·D − µ · A · µ · E

= −a · d · e ·
[
−a · d2 · u + a · d · e · v −

1

2
· e

]
− a · d2 ·

[
a · d · e · u − a · e2 · v −

1

2
· d

]
=((((((
a2 · d3 · e · u −

hhhhhhha2 · d2 · e2 · v +
1

2
· a · d · e2 −((((((

a2 · d3 · e · u +
hhhhhhha2 · d2 · e2 · v +

1

2
· a · d3

=
1

2
· a · d · (e2 + d2) =

1

2
· a · d

Somit

a · d = 2 · µ2 · (B ·D − A · E) = 2 · µ2 · h2 (32)

Damit können wir die Parameter d und e der Rotationsmatrix bestimmen:

(
x

y

)
=

(
d e

−e d

)
·
(
x ′

y ′

)
+

(
u

v

)
(33)
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Die Abbildung (33) bildet den Vektor
(
0

1

)
, der in die Richtung von

#      »

S′F ′ zeigt, ab auf den Vektor

(
d e

−e d

)
·
(
0

1

)
=

(
e

d

)

Multiplizieren wir diesen Vektor mit der positiven Zahl a, erhalten wir mit (31) und (32)

a ·
(
e

d

)
=

(
a · e
a · d

)
= 2 · µ2 ·

(
h1
h2

)
(
e

d

)
ist also der Einheitsvektor, der in die Richtung von

(
h1
h2

)
zeigt.

Somit gilt

e =
h1√

(h1)2 + (h2)2

d =
h2√

(h1)2 + (h2)2

(34.1)

(34.2)

h1 und h2 können also nicht beide null sein, da ja a > 0 vorausgesetzt ist im Fall 4 .

Sei also z. B. h1 ̸= 0. Dann folgt aus (31)

µ2 =
a · e
2 · h1

Aus (29) und (28) holen wir

µ2 =
a2

(A+ C)2

Somit gilt

Aa · e
2 · h1

=
aA2

(A+ C)2

und mit (34.1) erhalten wir

a =
(A+ C)2

2 ·
√
(h1)2 + (h2)2

(35)

Ist h1 = 0, dann haben wir h2 ̸= 0. (32) und (34.2) führen dann mit der analogen Rechnung zum
gleichen Resultat.
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Nun können wir auch den Wert von µ berechnen:

Nach (28) und (29) gilt µ =
a

A+ C
. Mit (35) erhalten wir dann sofort

µ =
A+ C

2 ·
√
(h1)2 + (h2)2

(36)

Aus (35) erhalten wir für das Quermass p der Parabel

p =
1

2 · a =
√
(h1)2 + (h2)2

(A+ C)2
(37)

Aus einer anderen Herleitung der Resultate wissen wir aber, dass auch gilt

p2 =
−DET
(A+ C)3

(38)

(37) und (38) sind nur äquivalent, wenn gilt

−DET · (A+ C) = (h1)2 + (h2)2 (39)

Diese Identität lässt sich durch simples Nachrechnen prüfen, wenn man für DET einsetzt D · h1+
E · h2. Es ist ja gemäss Definition von h1 und h2 auf der Seite 4 DET = D · h1 +E · h2 + F · det.

Nach (27) ist einer der beiden Eigenwerte 0. Nach (39) haben k = signum(−DET) und die Spur
A+ C dasselbe Vorzeichen. Daraus folgt mit den Definitionen auf der Seite 4

λ2 = 0 und spur = A+ C = λ1 ̸= 0

Wir können damit (38) auch anders schreiben:

p =

√
−DET
(λ1)3

(40)

Diese Formel haben wir mit (16) schon für die Ellipse gefunden, und sie wird genauso auch für das
Quermass der Hyperbel gelten.

Nun fehlen uns noch die Koordinaten u und v des Scheitelpunktes S der Parabel. Bei diesen
Rechnungen benötigen wir noch zwei kleine weitere Gleichungen:

e

2 · µ =
h1 · 2 ·

√
(h1)2 + (h2)2√

(h1)2 + (h2)2 · 2 · (A+ C)
=
h1
A+ C

d

2 · µ =
h2 · 2 ·

√
(h1)2 + (h2)2√

(h1)2 + (h2)2 · 2 · (A+ C)
=
h2
A+ C

(41.1)

(41.2)
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I, II und IV =⇒ µ ·D = −µ · A · u − µ · B · v − µ ·
e

2 · µ

II, III und V =⇒ µ · E = −µ · B · u − µ · C · v − µ ·
d

2 · µ

Mit (36) und (41) erhalten wir nach Division durch µ

i) A · u + B · v = −D −
h1
A+ C

= −D − G

ii) B · u + C · v = −D −
h2
A+ C

= −E −H

(42.1)

(42.2)

mit den Abkürzungen

G =
h1
A+ C

und H =
h2
A+ C

Die beiden Geraden i) und ii) sind identisch: Wegen det = 0 sind sie sicher parallel, und da eine
Lösung S = (u/v) existiert, sind sie sogar identisch.

Wir brauchen auf jeden Fall noch die Gleichung VI um die Werte von u und v zu bestimmen:

−u · IV : −µ ·D · u = a · d2 · u2 − a · d · e · u · v +
1

2
· e · u

−v · V : −µ · E · v = a · e2 · v2 − a · d · e · u · v +
1

2
· d · v

Addiert, mit VI : −µ ·D · u − µ · E · v =! µ · F − µ ·
e

2 · µ · u − µ ·
d

2 · µ · v

Division durch −µ : D · u + E · v = −F +
h1
A+ C

· u +
h2
A+ C

· v

oder

iii) F = (G −D) · u + (H − E) · v (43)

S ist der Schnittpunkt von i) und iii) falls A ̸= 0, sonst der Schnittpunkt von ii) und iii). Wir müssen
also eine Fallunterscheidung machen.

Wir haben also

i) A · u + B · v = −D − G

ii) B · u + C · v = −E −H

iii) (G −D) · u + (H − E) · v = F
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Es sei z. B. A ̸= 0 (rechne sonst mit C ̸= 0 und ii) statt i) !):

• A ̸= 0 =⇒ d2 =
A

A+ C
̸= 0 =⇒ d ̸= 0 =⇒ h2 ̸= 0

• (G −D) · i) : A · (G −D) · u + B · (G −D) · v = −(G −D) · (G +D)

A · iii) : A · (G −D) · u + A · (H − E) · v = A · F

subtrahiert : [B · (G −D)− A · (H − E)] · v = D2 − G2 − A · F

• Ist die eckige Klammer von null verschieden??

[B · (G −D)− A · (H − E)] = B ·
(
h1
A+ C

−D
)
− A ·

(
h2
A+ C

− E
)

=
B · h1 − B ·D · (A+ C)− A · h2 + A · E · (A+ C)

A+ C

=
B · (B · E − C ·D)− A · B ·D − B · C ·D + A · (B ·D − A · E) + A2 · E + A · C · E

A+ C

=
B2 · E − B · C ·D − A · B ·D − B · C ·D − A · B ·D + A2 · E + A2 · E + A · C · E

A+ C

mit B2 · E = A · C · E wegen det = 0 :

=
2 · (A · C · E − B · C ·D − A · B ·D + A2 · E)

A+ C

=
2 · [C · (A · E − B ·D) + A · (A · E − B ·D)]

A+ C

=
−2 ·����

(A+ C) · (B ·D − A · E)
����A+ C

= −2 · h2 ̸= 0 !

• also v =
A · F + G2 −D2

2 · h2
• dann erhalten wir (immer noch im Fall von A ̸= 0 ⇐⇒ h2 ̸= 0 !)

u =
−D − G − B · v

A

(44.1)

(44.2)

Die gleiche Rechnung für den Fall C ̸= 0 (und damit h1 ̸= 0 !) liefert

u =
C · F +H2 − E2

2 · h1
und daraus

v =
−E −H − B · u

C

(45.1)

(45.2)
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Damit ist in allen Fällen S = (u/v) und damit auch die Translation bei der Rücktransformation
bekannt!

Nun berechnen wir den Vektor
#   »

SF , der vom Scheitelpunkt zum Brennpunkt der Parabel zeigt:

#   »

SF =

(
d e

−e d

)
·

#      »

S′F ′ =

(
d e

−e d

)
·
(
0
1
4·a

)
=
1

4 · a ·
(
d e

−e d

)
·
(
0

1

)

=
1

4 · a ·
(
e

d

)
=

√
(h1)2 + (h2)2

2 · (A+ C)2 ·
1√

(h1)2 + (h2)2
·
(
h1
h2

)
=

1

2 · (A+ C)2 ·
(
h1
h2

)

Also

#   »

SF =
def

(
r

s

)
=

1

2 · (A+ C)2 ·
(
h1
h2

)
(46)

Für den Brennpunkt F der Parabel gilt somit

F = (u + r/v + s) (47)

Für den „Leitpunkt“ L, also den Schnittpunkt der Symmetrieachse mit der Leitgeraden, gilt

L = (u − r/v − s) (48)

S und F liegen auf der Symmetrieachse der Parabel.

Also ist
#   »

SF ∼
(
h1
h2

)
∼

(
e

d

)
ein Richtungsvektor.

Daher gilt für diese Symmetrieachse m =
d

e
oder

e · (y − v) = d · (x − u)

oder

h1 · (y − v) = h2 · (x − u)

(49.1)

(49.2)

Für die Leitgerade gilt entsprechend

e · (x − (u − r)) = −d · (y − (v − s))

oder

−h1 · (x − u + r) = h2 · (y − v + s)

(50.1)

(50.2)

Damit sind alle relevanten Stücke bekannt im Falle von DET ̸= 0. Sie können vom GeoGebra-
Programm „parabol.ggb“ sofort berechnet und eingezeichnet werden.
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Laden Sie das Programm „parabol.ggb“ von meiner Webseite „www.physastromath/material/ ma-
thematik/conics“ herunter. Dieses Programm bietet keinen Schieberegler an für den Koëffizienten
C. Der Wert von C wird durch die Bedingung det = A · C − B2 = 0 festgelegt. Damit ist sicher-

gestellt, dass der parabolische Fall vorliegt. Es ist also C =
B2

A
, weshalb das Programm für A den

Wert 0 nicht akzeptieren kann.
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Auf den Seiten 15 bis 19 haben wir gezeigt:

Ist (1) äquivalent zu (21), sind wir also im Fall 4 , so gilt det = 0 nach (27) und DET ̸= 0 nach
(34) und (39).

Wir müssen nun noch umgekehrt zeigen, dass im Falle von det = 0 und DET ̸= 0 die Lösung von
(1) immer kongruent ist zu einer Lösung von (25). Wir zeigen wieder, wie man λ1, λ2, µ, a, d , e,
u und v bestimmen muss, damit die Gleichungen I bis VII erfüllt sind und (12) respektive (33) die
beiden Lösungskurven aufeinander abbilden.

Es sei also det = 0 und DET ̸= 0.

1. Setze λ1 = A+ C und λ2 = 0

2. Setze e und d gemäss (34)

3. Setze a gemäss (35)

4. Setze µ gemäss (36)

5. Setze u und v nach (44) falls A ̸= 0,

setze u und v nach (45) falls A = 0 und C ̸= 0

6. Zeige nun, dass mit diesen Werten die Gleichungen I bis VII erfüllt sind!

Die Beweise zu 6. sind nicht schwierig. Sind sie geführt, ist auch bewiesen, dass die Gleichungen
(1) und (25) äquivalent sind. Ihre Lösungskurven, also die beiden Lösungsparabeln, werden durch
(12) resp. (33) aufeinander abgebildet.

Damit ist auch der Fall 4 unserer Tabelle vollständig abgehandelt.
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4 Die „entarteten“ Fälle 5 und 6

Die beiden Fälle lassen sich genau gleich behandeln. Im Fall 5 ist A ̸= 0, im Fall 6 ist C ̸= 0.
Es können nicht A und C gleichzeitig null sein, da sonst wegen 0 = det = A · C − B2 auch B und
somit alle drei quadratischen Koëffizienten von (1) null wären.

Es sei also (1) äquivalent zu

(x ′)2 + 2 ·D · x ′ + A · F = 0 (51)

Die Lösungsmengen von (1) sollen durch die Drehstreckung

(
x ′

y ′

)
=

(
d −e
e d

)
·
(
x − u
y − v

)
(52)

auf die Lösungsmenge von (51) abgebildet werden.

Wir setzen die Werte für (x ′/y ′) von (52) in (51) ein und erhalten

(d · x − e · y − d · u + e · v)2 + 2 ·D · (d · x − e · y − d · u + e · v) + A · F = 0

Ausmultipliziert:

d2 · u2 − 2 · d · e · u · v − 2 · d2 · u · x + 2 · d · e · u · y + e2 · y2 + 2 · d · e · v · x
−2 · e2 · v · y + d2 · x2 − 2 · d · e · x · y + e2 · y2 + 2 ·D · d · x − 2 ·D · e · y
−2 ·D · d · u + 2 ·D · e · v + A · F = 0

Der Koëfizientenvergleich mit (1) liefert für eine Konstante µ ̸= 0 die Gleichungen

I µ · A = d2

II µ · B = −d · e

III µ · C = e2

IV µ ·D = −d2 · u + d · e · v +D · d

V µ · E = d · e · u − e2 · v −D · e

VI µ · F = A · F + d2 · u2 − 2 · d · e · v + e2 · v2 − 2 ·D · d · u + 2 ·D · e · v

Die Forderung d2 + e2 = 1 lassen wir hier fallen!
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Wir ziehen wieder einige Schlüsse aus unseren Gleichungen:

a) µ2 · det = µ2 · (A · C − B2) = µ · A · µ · C − (µ · B)2 =
d2 · e2 − (−d · e)2 = d2 · e2 − d2 · e2 = 0

Es gilt somit det = 0 (53)

b) µ2 · h1 = µ2 · (B · E − C ·D) = µ · B · µ · E − µ · C · µ ·D =
−d · e · (d · e · u − e2 · v −D · e)− e2 · (−d2 · u + d · e · v +D · d) =
−�����
d2 · e2 · u +XXXXXd · e3 · v +�����

d · e2 ·D +�����
d2 · e2 · u −XXXXXd · e3 · v −

XXXXXd · e2 ·D = 0

Es gilt also h1 = 0 und B · E = C ·D (54)

c) Genauso erhält man aus µ2 · h2
h2 = 0 und B ·D = A · E (55)

d) Wegen det = 0 gilt immer noch −DET · (A+ C) = (h1)2 + (h2)2

Aus (54) und (55) erhalten wir somit
DET = 0 (56)

Die spur kann ja nicht null sein wegen µ · A+ µ · C = d2 + e2 !

Wir sind damit zwingend in der Situation 5 oder 6 mit

det = 0, DET = 0 und (A ̸= 0 oder C ̸= 0)

Wir geben nun eine explizite Drehstreckung an, welche in dieser Situation die Lösungen von (1)

auf die Lösungen von 5 oder 6 abbildet, und wir zeigen auch, wie diese Lösungen aussehen.

Sei also zuerst A ̸= 0 (Fall 5 )

Wir multiplizieren (1) mit A und erhalten mit det = 0 und h2 = 0

A2 · x2 + 2 · A · B · x · y + A · C · y2 + 2 · A ·D · x + 2 · A · E · y + A · F = 0
A2 · x2 + 2 · A · B · x · y + B2 · y + 2 · A ·D · x + 2 · B ·D · y + A · F = 0
(A · x + B · y)2 + 2 ·D · (A · x + B · y) + A · F = 0

Die Transformation

(
x ′

y ′

)
=

(
A B

−B A

)
·
(
x

y

)
(57)

führt also (1) über in die äquivalente Gleichung

(x ′)2 + 2 ·D · x ′ + A · F = 0 (58)
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Die Lösungen von (1) erhalten wir somit aus den Lösungen von (58), wenn wir die inverse Abbildung
von (57) darauf anwenden:

(
x

y

)
=

1

A2 + B2
·
(
A −B
B A

)
·
(
x ′

y ′

)
(59)

Die Lösungen von (58) hängen nur von der Diskriminante der quadratischen Gleichung ab. Diese
ist

4 ·D2 − 4 · A · F = 4 · (D2 − A · F )

Ist sie negativ, so hat (58) keine Lösungen. Damit hat auch (1) keine Lösungen.

Ist die Diskriminante null, also D2 = A · F , so ist die einzige Lösung von (58) x ′ = −D und y ′

ist beliebig. Die Lösungsmenge von (58) ist eine Gerade durch x ′ = −D, welche parallel ist zur
y ′-Achse. Bildet man zwei Punkte dieser Geraden, z. B. (−D/0) und (−D/1) mit (59) ab, so hat
man 2 Punkte der Lösungsgeraden von (1).

Ist die Diskriminante positiv, also D2 > A · F , so gibt es zwei Lösungen für x ′:

x ′ = −D ±
√
D2 − A · F

Zu diesen Werten von x ′ gehören zwei parallele Geraden als Lösung von (58), welche wiederum mit
(59) auf die beiden parallelen Lösungsgeraden von (1) abgebildet werden können.

Wenn A null ist, muss zwingend gelten C ̸= 0

Sei also jetzt C ̸= 0 (Fall 6 )

Dann multipliziert man (1) mit C und erhält ganz ähnlich

(x ′)2 + 2 · E · x ′ + C · F = 0 (60)

mit (
x ′

y ′

)
=

(
B C

−C B

)
·
(
x

y

)
(61)

Die entscheidende Diskriminante ist jetzt

4 · (E2 − C · F )

und die Rücktransformation erfolgt durch(
x

y

)
=

1

B2 + C2
·
(
B −C
C B

)
·
(
x ′

y ′

)
(62)

Die Diskussion der Lösungen von (60) erfolgt vollkommen analog zum Fall 5
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Damit sind die „entarteten“ parabolischen Fälle 5 und 6 in eine Richtung abgehandelt: Ist (1)

äquivalent zu 5 oder 6 , dann gilt det = 0 und DET = 0 und die Lösungsmenge von (1) folgt
der gegebenen Beschreibung.

Nun müssen wir noch umgekehrt zeigen, dass im Falle von det = 0 und DET = 0 folgt, dass (1)

äquivalent ist zu 5 (im Falle von A ̸= 0). Aus det = 0 und DET = 0 folgt aber nach (39) h1 = 0
und h2 = 0, somit B · E = C · D und B · D = A · E. Das sind genau die Voraussetzungen dafür,

dass die Transformationen (57) resp. (59) eine Äquivalenz der Lösungsmengen von (1) und 5

vermitteln!
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5 Die hyperbolischen Fälle 7 und 8

In den Fällen 7 und 8 soll die Gleichung (1) äquivalent sein zu

(x ′)2

a2
−
(y ′)2

b2
= κ (63)

mit a2 ≥ b2 > 0 und κ ∈ {0, 1}

Die Situation ist bis auf wenige Vorzeichenunterschiede völlig identisch mit derjenigen bei den
Ellipsen, sie lässt sich auf dieselbe Art behandeln.

Die Parameter u, v , d und e der Rücktransformation der Lösungskurve von (63) auf diejenige von
(1) werden genau gleich berechnet wie im elliptischen Fall, die Formeln (8), (19) und (20) sind hier
genauso gültig.

Im Fall 7 gibt es einen Vorzeichenunterschied bei der Berechnung von b2:

a2 =
−DET
det · λ2

=
−DET
λ1 · (λ2)2

b2 =
+DET
det · λ1

=
+DET
(λ1)2 · λ2

(13.1 = 64.1)

(64.2)

Weil aber bei Hyperbeln gilt c2 = a2 + b2 (statt c2 = a2 − b2 wie bei den Ellipsen) gelten die

Formeln für c2, ε und p weiterhin. (14), (15) und (16) gelten also auch im Fall 7 .

Im Fall 8 , also für κ = 0, setze man a2 = (λ1)2 und b2 = −λ1 ·λ2. Die Lösungsmenge für (x ′/y ′)
besteht dann aus den beiden Geraden

y ′ = ±
√
b2

a2
· x ′ = ±

√
−λ2
λ1
· x ′ (65)

die sich im Nullpunkt schneiden. (12) bildet diese beiden Geraden auf die Lösungsmenge von (1)

ab im Fall 8 .

Die folgende Seite zeigt den Output des Programms „ellipt_hyperbol.ggb“ in einem hyperbolischen
Fall.
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