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1 Strategie und grundlegende Definitionen

Wir untersuchen die Gleichung
Ax2+2-B-x-y+C-y>+2-D-x+2-E-y+F=0 (1)

fur x, y € R. Es sollen dabei nicht A, B und C gleichzeitig null sein.

Es zeigt sich, dass die folgenden Terme ausreichen, um eine vollstandige Fallunterscheidung vorzu-
nehmen:

A B D
e DET=|B C E|=A-C-F+2-B-D-E-C-D*-A-E’>-F-B?
D E F

=A-C-B?

det:‘

o spur=A+C
A und C selber

Wir werden zeigen, dass die folgende Tabelle eine vollstandige Gliederung aller moglichen Falle
darstellt. Die Losungsmenge von (1) geht immer durch eine Drehung oder eine Drehstreckung
und eine Translation aus der bekannten Losungsmenge einer der Gleichungen in der vierten Spalte
hervor. In den ersten drei Spalten stehen die Kriterien, welche ausreichen zu entscheiden, welcher
Fall konkret vorliegt.



¢ [
USPEIRD) BPUBPIBULIS YIS T 0= - 0=13a
® (A )
0>1p
|oquadAH sule 0 = & 0# 13a
(A 2(X)
usgueuIWLNSI Jop pop wep | O | 0= D+ X T2+ () 0# D
yoeu af - uspeJary aj|jeled g J1apo 0=13d
opeJan) aule ‘abus|N 2499 31
& |o=4-v+x-a-c+ (X 0#V 0=19p
loqesed auig | (¥) o<e ' (x)-e=/A 0# 13d
9 ad
pund 1 0= + 0= 13d
® NPy
abualy 2499 a1 © - = al + d 0 <Jnds- 37 0<3¥p
. (A) ()
0# 133
SI9JY U9 4opo 3sdl||g aulg @ 1= al + ad 0 > Jnds- | 3Q
(A (X
abuswisbunso] N punydis|o U143y




Bei det > 0 sprechen wir vom elliptischen Fall, bei det = 0 vom parabolischen Fall und bei det < 0
vom hyperbolischen Fall.

Das Vorgehen ist in allen Fallen dasselbe: Wir nehmen an, dass (1) aquivalent ist zu einer bestimm-
ten Gleichung unserer Liste. Daraus leiten wir eine Reihe von Gleichungen ab, welche die Gestalt
der Kurve und die Abbildung von (x/y) auf (x’/y’) genau beschreiben. Schliesslich zeigen wir, dass
alle diese Gleichungen auch erfiillt werden kdnnen, wenn nur die Voraussetzungen in den ersten drei
Spalten erfiillt sind.

In allen Fallen sollen samtliche Details der Losungskurve von (1) explizit berechnet werden. Dazu
werden noch einige weitere Terme definiert:

e k =signum(—DET)

. A1:%-<A+C+k-\/(A—C)2+4-82>
AQZ%'<A+C—|(‘\/(A—C)2+4~B2>

A1 und X sind die beiden Eigenwerte der symmetrischen Matrix <2 ?)

Aufgrund der Definition gilt det = A1 - Ao und spur = A1 + X». Die zugehodrigen Eigenvektoren
werden in dieser Darstellung nicht benétigt.

Zwei weitere Grossen tauchen aber wiederholt auf, die wir aus der Entwicklung von DET nach der
letzten Spalte gewinnen:

B C
D E

A B
D E
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B C
—D.-(B-E—-C-D)—E-(A-E—B-D)+F-(A-C—B?)
=D-Mn + E-h + F - det

mt h=B-E—-C-D und hh=B-D—-A-E.



2 Die elliptischen Fille ©, @ und ®

Die quadratische Gleichung

Ax?+2-B-x-y+C-y>+2-D-x+2-E-y+F=0 (1)

sei also aquivalent zu

X/2 "2
(32) +(ybz) — 2)

mit k€ {-1,0,1} und a%> b?> > 0.
Wir wollen also die Falle @ @ und @ gleichzeitig behandeln.

Es soll also eine Translation und eine Drehung geben, welche (x/y) auf (x’/y’) abbilden, sodass
(x/y) der Gleichung (1) genau dann geniigt, wenn (x’/y’) eine Lésung von (2) ist:

X\ _(d —e\ (x—u\_(d-x—du—e-y+e-v
y'] \e d y—v) \ex—e-u+d-y—d-v
(x/y) soll also genau dann eine Losung von (1) sein, wenn gilt

b>-(d-x—d-u—e-y+e-v)°+a°-(e-x—e-ut+d-y—d-v)°=k-a°-b> (3)

Multipliziert man (3) aus und vergleicht die Koéffizienten mit (1), so erhalt man fiir einen beliebigen
Skalenfaktor u # 0 die Gleichungen

| w-A=2a%-e+b% d?

I w-B=(a%>-b%)-d-e

N w-C=a’-d?>+b°- e

V u-D=b>-d-e-v—>»b>-d?> u—a*-e*-u—a’-d-e-v

V. pu-E=b>-d-e-u—b-e2-v—2a%>-d-e-u—a*-d? v

VI u-F=b2-d?-u2—2-b2-d-e-u-v+b2-e2-v2+2a2.e2. 12
+2-a%-d-e-u-v+a’-d>-v?—k-a° b?

nebst

VIl e2+d?2=1

Mithilfe dieser sieben Gleichungen werden wir a, b, d, e, u, v und u durch die Koéffizienten der
Gleichung (1) ausdriicken.



[, Il und VII liefern

p-A+tp-C=a%(e2+d*) + b (e + d?) = a*> + b

1 1
p-spur=a’+b%> spur:ﬁ-az—i-ﬁ-bz (4)

[, I, 11l und VII liefern

p?-det=p-A-p-C—(p-B)?
=(@%-e®+b°-d?)-(a°-d° + b*-e?) — (a° — b?)? - d° - €2
=t e P+ P et b dt + B
(@ d> e =222 b2 d?- 2 + B d>e?)
=a2 b (e*+d* +2-d° &)
— PR (P A= (12 =a B

1 1
det = —-a%- — . b (5)
" "
(4) und (5) bedeuten zusammen, dass gilt
1 1
A =—-a’und Ao = — - b? (6)
" 1

Beide Eigenvektoren sind verschieden von null, da 4 # 0 und a®> > b®> > 0. A1 und X, haben
dasselbe Vorzeichen, es gilt daher

spur=A1+X>#0 und det=X1-X>>0 (7)

Dieses ,,det > 0" ist charakteristisch fiir den elliptischen Fall.

Es ist |A1] > |A2| > 0. Wir werden spater sehen, dass das zu unserer expliziten Definition der
beiden Eigenwerte passt.

Im Spezialfall des Kreises gilt a> = b%. Mit I, Il und Ill sieht man schnell, dass dies gleichbedeutend
ist mit
B=0und A=C

Die Rotation ist dann tberfliissig, man kann d = 1 und e = 0 setzen.

Ganz elementar, also ohne partielle Ableitungen, lassen sich aus unseren Gleichungen die Parameter
u und v der Translation bestimmen. Wir beniitzen I, Il und Ill um die Gleichungen IV und V neu
zu schreiben:

IV wu-D=(-a*-e—-b-d?) - u+(b>-a°)-d-e-v=—p-A-u—u-B-v

V. pu-E=(-b-e>-2%-d?)-v+b*°—a°)-d-e-u=—u-B-u—pu-C-v



Nach Division durch —u erhalten wir
A-u+B-v=-D q A B\ (u\_(-D
B-u+C-v=—E| ° \B c) \v) \-E
Nach (7) gilt det # 0, es existiert also die inverse Matrix. Multipliziert man mit dieser von links,
erhalt man
uy 1 (¢ -BY (-D\ _ 1 (B-E-C-D
v)] A-C-B2 \-B A —E) det \B-D—A-E
Mit den Abkiirzungen h =B-E—C-Dund h, =B-D — A E qilt also

M= (u/v) = (hl ”2> (8)

det/ det

Ist kK = 1, so stellt M den Mittelpunkt der Ellipse dar.
Ist Kk =0, so ist M die einzige Losung von (1), da (0/0) dann die einzige Losung von(2) ist.
Und wenn k = —1 gilt, hat (2) keine Losungen, weshalb dann auch (1) keine Losungen hat.

Nun betrachten wir die Gleichung VI:

p-F=(b-d>+a% €)1’ + (b*-e® +a%- d?) - v?
+2- (a2 -b)-d-e-u-v—k-a>-b?
:/J,'A‘U2+,U,'C'V2+,U,'2'B‘U'V—K,'a2'b2
Somit gilt
1

ﬁ-f{-a2-b2:A-u2+C-v2+2-B~u-v—F

Setzt man die Werte ein, die wir in (8) fiir v und v gefunden haben, dann erhalt man nach langerer
Rechnung

—DET

2 2
-a b — .
F H det

(9)

Diese Gleichung zeigt, dass k genau dann null ist, wenn auch DET null ist. Damit sind die Kriterien

fiir die Zuordnung zum Fall @ bewiesen.

Mit (9) konnen wir die Gleichung (3) neu schreiben:

—DET
det

b (X +a% (V)P =k-a°- b’ =pu- (10)



Mit (6) erhalten wir daraus

—DET
det

pedo s (P - d- (V)P =
und nach Division durch w

—DET

aVAY: VA
Ao (XD + A () et

(11)

Ist DET = 0, so ist die einzige Losung von (11) der Punkt (x’'/y’) = (0/0); einzige Losung von
(1) ist damit der Punkt M = (u/v). Es ist ja

X d e x' u
()= 9)-0) () &
Hat DET dasselbe Vorzeichen wie A1, A> und die Spur, so hat (11) keine Losungen. Dann ist

DET - spur > 0 und wir sind im Fall (2). Die Kriterien fiir diesen Fall sind somit auch bewiesen.

(11) und (1) stellen also nur im Falle von DET - spur < 0 eine Ellipse dar. Wir wollen noch die
Kennzahlen dieser Ellipse bestimmen:

S . et
Multipliziert man (11) mit DET

und vergleicht mit der Normalform der Ellipsengleichung

2 TR T L
so erhalt man
—DET —DET
2
= = 13.1
T T et o A ()2 (13.1)
—DET —DET
b? = = 13.2
det - X\ ()\1)2 - Ao ( 3 )
Daraus erhalten wir weiter
—DET 1 1 —DET - (A1 — X\2)
2 2 2
— 2 B2 = = - =) = 14
© -7 det <>\2 M) det? (14)
Fiir die Exzentrizitat € ergibt sich daraus
6226—2: A1 =22) -2 (A1 —X2)-Ke
a2 det A e
somit
A2
=4/1—— 1
‘ . (15)



Fiir das Quermass p resultiert

a

, (P\? b* -DET-Xx -DET
p= T2 det-(n)2 . (M)

Es wird sich herausstellen, dass die Formeln (15) und (16) auch fiir Parabeln und Hyperbeln gelten.
Diese Formeln sind neu, bis jetzt habe ich sie jedenfalls in der Literatur oder den bekannten For-
melsammlungen nicht angetroffen. Man kann sie auch nur dann finden, wenn man explizit festlegt,
welches der Eigenwert A1 und welches der Eigenwert A» sein soll!

oder

Im interessanten Fall von DET # 0 kdnnen wir jetzt auch den Skalenfaktor u berechnen:
Aus (6) folgt

& -DET  —DET
B T det 2o h | det?

(17)

Damit sind &, a2, b?, u, v und i so bestimmt, dass | bis VII erfiillt sind und die Ldsungsmenge von
(2) mit der Abbildung (12) auf die Losungsmenge von (1) abgebildet wird. Es fehlen nur noch die
Werte von d und e in der Matrix der Rotation.

Diese Werte sind aber schon durch die Gleichungen I, Il und VII bestimmt. Allerdings muss dabei
der Spezialfall B = 0 gesondert behandelt werden. Machen wir das zuerst:

Esseialso B =0. Wegen det=A-C—-B%>=A-C >0 folgt dann A # 0 und C # 0. Wir kdnnen
daher (1) neu schreiben als

D\? E\? D2 E?

oder

-F-A-C+D> C+E?-A | —DET
A-C © det

A-(X)P+C- (V)= (18)

Das ist schon eine Ellipsengleichung, falls DET - spur < 0. (18) ist aquivalent zu

1\2 2
o

=1

—DET —DET
. 2 2 _
mit a ~ det-A und b ~ det-C



Falls a> > b? gilt, also falls |A| < |C|, braucht es keine Drehung, wir setzen dann d = 1 und
e = 0. Andernfalls braucht es noch eine Drehung um 90° (egal in welcher Richtung), wir setzen
dann d = 0 und e = 1. Zusammengefasst:

(B=0und [A|<I|C]) = (d=1unde=0) (19.1)

(B=0und |[A|>|C|]) = (d=0unde=1) (19.2)

Es gilt nun noch den allgemeinen Fall mit B # 0 abzuhandeln.
Ist B # 0 dann gilt auch

e d#0unde##0und a®# b> wegen I|

e A#O0Ound C#0Owegen A-C—B?>>0

e )1 # X, aufgrund der Definition

Wir wahlen dann d = cos(¢) > 0, da wir eine Ellipse aus Symmetriegriinden immer nur um einen
spitzen Winkel drehen missen, um sie in Hauptachsenlage zu bringen. Die Drehung um 90° haben
wir im Fall B = 0 schon erledigt.

Es geniigt also, d? zu berechnen, wofiir wir nur | und VII brauchen:
p-A=2a2-(1—d*)+b% d*>=a%+ (b*> - a%) - d?

Daraus mit (6)

CprA—a pA—pen A-
N b2 — a2 _p,->\2—/1,->\1_>\2—>\1

[ A — A
d= 20.1
v (20.1)

Die Gleichung Il liefert uns dazu noch den Wert von e mit dem richtigen Vorzeichen:

d2

u-B w-B B
_ _ _ 20.2
T @) d nOn—2)d d-(Ou— ) (20.2)

10



Damit ist jetzt folgendes bewiesen:

i) Gilt (1) <= (1), dann beschreibt (1) eine Ellipse mit Mittelpunkt M = (u/v) und den
Halbachsen a und b. Die Richtung der Achsen wird durch die Parameter d und e der Rotation
beschrieben.

In diesem Fall gilt det > 0, DET # 0 und DET - spur < 0.

i) Gilt (1) <= (2), dann ist die Lésungsmenge von (1) leer.
Es gilt dann det > 0, DET # 0 und DET - spur > O.

i) Gilt (1) <= (3), dann besteht die Lésungsmenge aus dem einzigen Punkt M = (u/v).
Dann gilt det > 0 und DET = 0.

Nun miissen wir noch die Umkehrung zeigen:

i) (det>0 und DET #0 und DET -spur < 0) = ((1) <= (1)
i) (det>0 und DET #0 und DET -spur>0) = ((1) <= (2))

i) (det>0 und DET =0) = ((1) <= @)

Der Beweis ist in allen drei Fallen konstruktiv. Wir zeigen, wie man im jeweiligen Fall a, b, d, e, u,
A1, A2, u und v bestimmt, sodass | bis VII erfiillt sind und somit die Lésungsmenge von (1), (2)
oder (3) durch die Abbildung (12) auf die Lésungsmenge von (1) abgebildet wird.

In den Fallen (U und (2), also wenn gilt det > 0 und DET # 0, gehe man wie folgt vor:

1. Bestimme X\; und X> nach unseren Definitionen
Bestimme w nach (17)

Bestimme v und v nach (8)

Bestimme a° und b? mit (13)

Bestimme d und e nach (19) oder (20)

© o & w b

Zeige dass mit diesen Werten | bis VII erfillt sind!
Die Beweise zu 6. lassen sich miihelos durchfiihren, sie wiirden aber zwei bis drei weitere Seiten

beanspruchen und werden hier weggelassen. Es folgt nun die Aquivalenz von (1) zu (D resp. (2,
je nach dem Vorzeichen von DET - spur.

11



Im Fall (3), also wenn gilt det > 0 und DET = 0, muss man leicht anders vorgehen:

1. Bestimme A7 und X> nach unseren Definitionen
Bestimme v und v nach (8)
Bestimme d und e nach (19) oder (20)

Setze = A1, @ =p-A = (A)%und b2 = - X = A1 - Ao

LA S T

Zeige dass mit diesen Werten | bis VII erfiillt sind!

Mit (10) folgt dann die Aquivalenz von (1) und (3). Die Beweise zu 5. sind auch hier harmlos.

Sie konnen leicht selber priifen, ob all die hergeleiteten Formeln stimmen: Laden Sie die GeoGebra-
Datei ,ellipt _hyperbol.ggb" von meiner Webseite ,www.physastromath.ch/mathematik/geogebra”
herunter. Sie konnen dann mit Schiebereglern die Parameter A bis F der quadratischen Gleichung
(1) einstellen. Der zugehorige Kegelschnitt wird gezeichnet, zusammen mit den Brennpunkten, den
Hauptachsen, den Scheitelpunkten, den Leitlinien usw. Diese Stiicke werden mit den Formeln in
diesem Kapitel berechnet, wie Sie im Algebra-Teil der GeoGebra-Datei sehen konnen.

Die Variablennamen sind wie in den Abschnitten 2 bis 7 des Skriptums ,Conics 01" gewahlt. Sie
sind identisch mit den Namen, die wir in diesem Skriptum verwendet haben. In wenigen Fallen gibt
es Abweichungen dazu:

) der erste Eigenwert Ay

q der zweite Eigenwert X5

querl das Quermass p des Kegelschnitts
quer2 das Quermass p des Kegelschnitts
epsl die numerische Exzentrizitat €
eps?2 die numerische Exzentrizitat €

Einige Werte wie zum Beispiel die Exzentrizitat und die spur werden zur Kontrolle auf verschiedene
Arten berechnet. Wenn Sie den Bereich oder die Feinheit der Schritte bei den Schiebereglern A
bis F dandern wollen, brauchen Sie nur mit der rechten Maustaste darauf zu klicken. Es klappt ein
Kontext-Menu auf; wahlen Sie dort den untersten Eintrag ,Eigenschaften” und Sie konnen alle
Vorgaben abandern.

Die folgende Seite zeigt ein elliptisches Beispiel:

12
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Zum Abschluss dieses Kapitels wollen wir noch eine hiibsche (aber bereits bekannte) Formel fiir
den Drehwinkel der Rotation herleiten.

Nach (12), (19) und (20) gilt fiir den Winkel ¢ der Riicktransformation

cos () =d, sin(p) = —e, tan(p) = _76

Die Goniometrie lehrt uns, dass flir den Tangens des doppelten Winkels gilt

e
—2.=
_ 2-tan(yp) d _2-d-e
tan(2-¢) = 1 —tan?(p) e?  e2—d? (21)
-7
Aus der Gleichung Il holen wir
2-u-B w
2-d-e:a2_b2:az_b2-2~8 (22)
Subtrahieren wir Il von |, erhalten wir
p-A—p-C=(a—b)- (e —d°)
also
2 o M (A=C)
(e —d°) = 252 —a2_b2-(A—C) (23)
Setzen wir (22) und (23) in (21) ein, ergibt sich
2-B
2.p)=—— 24
tan(2-9) = (24)

Die Formel gilt auch fiir B = 0, dann ist ¢ = 0° oder ¢ = 90° nach (19), somit 2 - ¢ = 0° oder
2. = 180°. Fiir A = C muss die Formel versagen, dann ist ja nach (23) e = d?. Fiir B # 0
bedeutet das einen Winkel ¢ von £45°, somit ist 2-¢@ = £90° und der Tangenswert davon existiert
nicht.

14



3 Der parabolische Fall ®

Die quadratische Gleichung
Ax*+2-B-x-y+C-y>+2-D-x+2-E-y+F=0 (1)
sei nun aquivalent zu

y'=a-(xX)? a>0 (25)

x' d —e X—u
G- 2)-C=) )
soll die Losungsmenge von (1) auf diejenige von (25) abbilden. Dabei ist S = (u/v) der Scheitel-
punkt der Lésungsparabel von (1):

Die Abbildung

yi

ol

Nach (26) gilt

xX=d x—e-y—d-u+e-v und y=e-x+d-y—e-u—d-v

15



Eingesetzt in (25) erhalten wir

a-(d®> w?>—-2-d-e-u-v—-2-d>u-x+2-d-e-u-y+e>-v>+2-d-e-v-x—2-€-v-y+
d> x> —2-d-e-x-y+e’-y’)=e-x+d-y—e-u—d-v

Der Koéffizientenvergleich mit (1) liefert die Gleichungen

Y,

V

VI
VII

‘L(' .

‘L('-
u.

e2

A=a-d?
.B=—a-d-e
.C:_a.ez

2 1
-D=-a-d -u+a-d-e-v—§-e

2 ].

E=a-d-e-u—a-e -v—§-d
F=a-d?> u>—-2-a-d-e-u-v+a-e2-vi+e-u+d-v
+d?>=1

Aus diesen Gleichungen ziehen wir nun eine Reihe von Folgerungen:

a)

b)

12

det=p? (A-C-B>)=p-A-u-C—(u-B)?=

a-d?-a-e>—(-a-d-e)?=a’>-d?>-e®—-3°-d° e =0

Die Gleichungen | - Ill verlangen also, dass bei Parabeln zwingend gilt

det=A-C—-—B2=0

(27)

Wegen det = 0 folgt A1 - A = 0. Da nicht beide Eigenwerte null sein kdnnen, ist genau einer
der beiden von null verschieden. Dieser Eigenwert ist dann gleich der Spur A+ C, es gilt also

spur=A4+C=XA1+ X #0

Dass die Spur nicht null sein kann, zeigt auch die folgende Rechnung:

p-(A+C)=p-A+u-C=a-d’°+a-e*>=a-(d?°+e’)=a>0

Also

p-(A+C)=a

16
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d) Aus (25) und I bis Il holen wir noch

—u-B —u-B -B
d. P pr— =
T T T L (A+O) A+sC (30.1)
WA - A A
d2: pumy =
a L (A+rC) A+C (30.2)
62_y,~C_ u-C _ C
T2 T L (A+rCO)  AxC (30.3)
e) I, Il und IV liefern zusammen mit VII
/J.2-(B-E—C-D):,U,-B-N,-E—,U,-C-/L-D
1 1
=—-a-d-e- a-d—e-u—a-ez-v—Q-d]—a-e2-{—a-d2-u+a-d-e-v—2-e
1 1
:—M+ﬁ-\e3\-m+§~a-d2-e+%—%+§-a-e3
_ 1 2, 2y _ L
=3 ae(d+e)—2 a-e
a-e=2-p2- (B-E-C-D)=2-u%-h (31)

f)  Genau so erhalten wir

M2'(B'D—A‘E):M'B'M'D—M'A'M'E

1 1
:a-d-e-[a-d2-u+a-d-e-v2oe]a-d2-{a-d-e-ua-e2-v2-d

:M—M+%‘a‘d'ez—az/wm+m+%'a'd3

_1 2 2 _1
=3 ad(e—i—d)—2 a-d
Somit
a-d=2-p?>- (B-D-—A-E)=2-u’-h (32)

Damit konnen wir die Parameter d und e der Rotationsmatrix bestimmen:

@) N (—de f/) ' C) + (5) (33)

17



Die Abbildung (33) bildet den Vektor <(1)

(% 8) ()=

Multiplizieren wir diesen Vektor mit der positiven Zahl a, erhalten wir mit (31) und (32)

(6= () =2 ()

<Z> ist also der Einheitsvektor, der in die Richtung von (h1> zeigt.
2

), der in die Richtung von S’F’ zeigt, ab auf den Vektor

Somit gilt
e= i (34.1)
Vv (h1)? + (h2)? -
d= i (34.2)

(h)? + (h2)?

h1 und hy konnen also nicht beide null sein, da ja a > 0 vorausgesetzt ist im Fall @

Sei also z. B. h; # 0. Dann folgt aus (31)

u?= ;:hel
Aus (29) und (28) holen wir
2
u = (A i C)2
Somit gilt
q-e 2%

2-h  (A+C)2
und mit (34.1) erhalten wir

e (A+ C)? (35)

2-1/(h1)? + (h2)?

Ist hy = 0, dann haben wir hy # 0. (32) und (34.2) fithren dann mit der analogen Rechnung zum
gleichen Resultat.

18



Nun konnen wir auch den Wert von u berechnen:

Nach (28) und (29) gilt u = Mit (35) erhalten wir dann sofort

_a
A+ C’
A+ C

IJ, =
2-4/(h)? + (h2)?
Aus (35) erhalten wir fiir das Quermass p der Parabel

1 V (h1)2 + (h2)2 (37)

P=5a~ (A+C)?

(36)

Aus einer anderen Herleitung der Resultate wissen wir aber, dass auch gilt

T AT op )
(37) und (38) sind nur dquivalent, wenn gilt
—DET - (A4 C) = () + (h)? (39)

Diese ldentitat lasst sich durch simples Nachrechnen priifen, wenn man fiir DET einsetzt D - hy +
E - hy. Es ist ja gemass Definition von h; und ho auf der Seite 4 DET =D -hy + E - ho + F - det.

Nach (27) ist einer der beiden Eigenwerte 0. Nach (39) haben k = signum(—DET) und die Spur
A+ C dasselbe Vorzeichen. Daraus folgt mit den Definitionen auf der Seite 4
AM=0 und spur=A+C=X #0

Wir kénnen damit (38) auch anders schreiben:

~ [-DET
PN Ow)?

(40)

Diese Formel haben wir mit (16) schon fiir die Ellipse gefunden, und sie wird genauso auch fiir das
Quermass der Hyperbel gelten.

Nun fehlen uns noch die Koordinaten u und v des Scheitelpunktes S der Parabel. Bei diesen
Rechnungen bendtigen wir noch zwei kleine weitere Gleichungen:

e hy-2- (h1)2+(h2)2 h

21 )P+ (P2 (A+C)  A+C ey
d ho -2 y/(h1)? + (h2)? ho (41.2)

20 (P +(m)y-2-(A+C) A+C
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Lund IV — g-D=—p-A-tu—p-B-v—p ——

"
d
l, Hlund V = u-E:—u-B-u—u-C-v—u-ﬁ
Mit (36) und (41) erhalten wir nach Division durch
) Au+B-v=-D " _ p_g
[ u V= A+ C - (42.1)
i) B-u+C-v=-D o gy (42.2)
B A+C '
mit den Abkiirzungen
o _ h
C=ayc " H=ac

Die beiden Geraden i) und ii) sind identisch: Wegen det = 0 sind sie sicher parallel, und da eine
Losung S = (u/v) existiert, sind sie sogar identisch.

Wir brauchen auf jeden Fall noch die Gleichung VI um die Werte von v und v zu bestimmen:

1
—u-1V: —/.L'D'U:a'd2'U2—a-d-e-u-V+§'e~u
1
—v-V: —M'E'Vza-e2-vz—a-d-e-u-v+§-d.v
Addiert, mit VI - Dy Eviu o,
: ; W W = U b ey
Division durch —: D-t+E-v——F 4+ -1 L
wreh g Peus v e e T Ay
oder
i) F=(G-D)-u+(H—E)-v (43)

S ist der Schnittpunkt von i) und iii) falls A # 0, sonst der Schnittpunkt von ii) und iii). Wir miissen
also eine Fallunterscheidung machen.

Wir haben also

) A u+B-v=-D-G
i) B-u+C-v=—E—-H
i) (G-D)-u+(H—E)-v=F
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Es sei z. B. A # 0 (rechne sonst mit C # 0 und ii) statt i) !):

A
A0 = d2:m;ﬁo — d#0 = hh #0

(G=D)-):A-(G=D) - u+B-(G—D)-v=—(G—-D)-(G+ D)
A-ii):A-(G=D)-u+A-(H—E)-v=A-F

subtrahiert : [B-(G—D)—~A-(H—E)]-v=D?>-G>—-A-F

Ist die eckige Klammer von null verschieden??

[B.(G—D)—A-(H—E)]:B-(ATC—D>—A-<A’7+2C—E>

Bl —B-D-(A+C)—A-h+A-E-(A+C)

A+C
B (B-E-C-D)-A-B-D-B-C-D+A-(B-D-A-E)+A?> E+A-C-E
B A+C
B> E-B-C-D-A-B-D-B-C-D-A-B-D+A?-E+A?>. E+A-C-E
B A+C

mit B2-E=A-C-E wegen det =0:

2. (A-C-E-B-C-D-A-B-D+A E)
B A+C

2. [C-(A-E-B-D)+A-(A-E—-B-D)]
B A+C

2. (A+C)-(B-D—A-E)
B A+C

= —2.-h#0!

V_A-F+G2—D2
- 2. hy

also

dann erhalten wir (immer noch im Fallvon A# 0 <= hy #0!)

,_~b-6-8Bv
- A

Die gleiche Rechnung fiir den Fall C # 0 (und damit h; # 0 !) liefert

C-F+H?—E?
u =
2-h

und daraus
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Damit ist in allen Fallen S = (u/v) und damit auch die Translation bei der Riicktransformation
bekannt!

Nun berechnen wir den Vektor §__> der vom Scheitelpunkt zum Brennpunkt der Parabel zeigt:

(%057 (4 (D)5 90
1 e _\/m 1 hy _ 1 .
_4-a'<d)_ 2 (A+C)? 'JW'(@) 2‘(A+C)2.<h2>

Also

4 () e ()
Fir den Brennpunkt F der Parabel gilt somit
F=(u+r/v+s) (47)
Fiir den ,Leitpunkt” L, also den Schnittpunkt der Symmetrieachse mit der Leitgeraden, gilt
L=(u—r/v—ys) (48)

S und F liegen auf der Symmetrieachse der Parabel.

Also ist SF ~ <Zl> ~ (2) ein Richtungsvektor.
2

d
Daher gilt fiir diese Symmetrieachse m = - oder

e-(y—v)=d-(x—u) (49.1)
oder

hi-(y=v)=ha-(x—u) (49.2)
Fir die Leitgerade gilt entsprechend

e (x—(u=n)=—d-(y = (v—9)) (50.1)
oder

—h1~(x—u—|—r):h2-(y—v+s) (502)

Damit sind alle relevanten Stiicke bekannt im Falle von DET # 0. Sie konnen vom GeoGebra-
Programm ,parabol.ggb” sofort berechnet und eingezeichnet werden.
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Laden Sie das Programm ,parabol.ggh” von meiner Webseite ,www.physastromath/material/ ma-

thematik/conics” herunter. Dieses Programm bietet keinen Schieberegler an fiir den Koéffizienten

C. Der Wert von C wird durch die Bedingung det = A- C — B? = 0 festgelegt. Damit ist sicher-
2

gestellt, dass der parabolische Fall vorliegt. Es ist also C = a weshalb das Programm fiir A den

Wert 0 nicht akzeptieren kann.

A =145
® :
\ B=2.1
@
\ D=11.1g-
P
\ E= 15
@ 5
\ F=20
@ .
3 4
24
: 1
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Auf den Seiten 15 bis 19 haben wir gezeigt:

Ist (1) aquivalent zu (21), sind wir also im Fall (4), so gilt det = 0 nach (27) und DET # 0 nach
(34) und (39).

Wir miissen nun noch umgekehrt zeigen, dass im Falle von det = 0 und DET # 0 die Losung von
(1) immer kongruent ist zu einer Losung von (25). Wir zeigen wieder, wie man A1, X2, i, a, d, e,
u und v bestimmen muss, damit die Gleichungen | bis VII erfiillt sind und (12) respektive (33) die
beiden Losungskurven aufeinander abbilden.

Es sei also det = 0 und DET # 0.

1. Setze Ay =A+Cund X, =0
Setze e und d gemass (34)
Setze a gemass (35)

Setze 1 gemass (36)

LA T

Setze u und v nach (44) falls A # 0,
setze u und v nach (45) falls A= 0 und C # 0
6. Zeige nun, dass mit diesen Werten die Gleichungen | bis VII erfiillt sind!
Die Beweise zu 6. sind nicht schwierig. Sind sie gefiihrt, ist auch bewiesen, dass die Gleichungen

(1) und (25) aquivalent sind. lhre Losungskurven, also die beiden Losungsparabeln, werden durch
(12) resp. (33) aufeinander abgebildet.

Damit ist auch der Fall (4) unserer Tabelle vollstandig abgehandelt.
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4 Die ,entarteten” Fille ® und ®

Die beiden Fille lassen sich genau gleich behandeln. Im Fall (5) ist A # 0, im Fall (6) ist C # 0.
Es konnen nicht A und C gleichzeitig null sein, da sonst wegen 0 = det = A- C — B? auch B und
somit alle drei quadratischen Koéffizienten von (1) null waren.

Es sei also (1) aquivalent zu

(X2 +2-D-X+A-F=0 (51)

Die Losungsmengen von (1) sollen durch die Drehstreckung

()= 9)-C=) o

auf die Losungsmenge von (51) abgebildet werden.

Wir setzen die Werte fiir (x’/y’) von (52) in (51) ein und erhalten
(d-x—e-y—d-utev)?’+2-D-(d-x—e-y—d-ut+e-v)+A-F=0

Ausmultipliziert:
d> > —-2-d-eu-v—2-d> u-x+2-d-e-u-y+e-y>+2-d-e-v-x
2. v-y+d?>x>-2-d-e-x-y+e?-y?+2-D-d-x—2-D-e-y
—2-D-d-u+2-D-e-v+A-F=0

Der Koéfizientenvergleich mit (1) liefert fiir eine Konstante i # 0 die Gleichungen

| w-A=d?
Il u-B=—-d-e
N w-C=e?
V pu-D=-d*>u+d-e-v+D-d
V. u-E=d-e-u—e’>-v—D-e
VI u-F=A-F+d> 1?>-2-d-e-v+e> v>—-2-D-d-u+2-D-e-v

Die Forderung d? + e = 1 lassen wir hier fallen!
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Wir ziehen wieder einige Schliisse aus unseren Gleichungen:
a) pr-det=p?-(A-C-B)=p-A-pu-C—(u-B)?=
d’>- e —(—d-e)’=d?>-e?—-d*-e>=0
Es gilt somit det=0 (53)
b) Mz'hl=M2'(B'E—C'D)IM'B'M'E—M-C'M'DI
—~d-e-(d-e-u—e*>v—-D-e)—e?>-(-d° u+d-e-v+D-d)=
—d?2e> u+detv+d-e* D+d2e u—dev—d-e*-D=0
Es gilt also hh=0 und B-E=C-D (54)

c) Genauso erhilt man aus u? - hy

hh=0 und B-D=A-E (55)

d)  Wegen det = 0 gilt immer noch —DET - (A+ C) = (h1)? + (h2)?

Aus (54) und (55) erhalten wir somit
DET =0 (56)

Die spur kann ja nicht null sein wegen - A+ - C = d? + 2!
Wir sind damit zwingend in der Situation @ oder @ mit
det =0, DET =0 und (A # 0 oder C # 0)

Wir geben nun eine explizite Drehstreckung an, welche in dieser Situation die Losungen von (1)

auf die Losungen von (5) oder (6) abbildet, und wir zeigen auch, wie diese Losungen aussehen.

Sei also zuerst A # 0 (Fall (5))
Wir multiplizieren (1) mit A und erhalten mit det =0 und h, =0

A2 X242 A-B-x-y+A-C-y>+2-A-D-x+2-A-E-y+A-F=0
A2 x> +2-A-B-x-y+B?> y+2-A-D-x+2-B-D-y+A-F=0
(A-x+B-y)?4+2-D-(A-x+B-y)+A-F=0

Die Transformation

690

fiihrt also (1) ber in die dquivalente Gleichung

(X2 +2-D-X+A-F=0 (58)
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Die Losungen von (1) erhalten wir somit aus den Losungen von (58), wenn wir die inverse Abbildung

von (57) darauf anwenden:
X 1 A -B x'
()= are G 5) () 8

Die Losungen von (58) hangen nur von der Diskriminante der quadratischen Gleichung ab. Diese
ist

4.D> —4-A-F=4-(D>-A-F)

Ist sie negativ, so hat (58) keine Losungen. Damit hat auch (1) keine Losungen.

Ist die Diskriminante null, also D?> = A - F, so ist die einzige Losung von (58) x’ = —D und y’
ist beliebig. Die Lésungsmenge von (58) ist eine Gerade durch x’ = —D, welche parallel ist zur
y’-Achse. Bildet man zwei Punkte dieser Geraden, z.B. (—D/0) und (—D/1) mit (59) ab, so hat
man 2 Punkte der Losungsgeraden von (1).

Ist die Diskriminante positiv, also D? > A - F, so gibt es zwei Losungen fiir x’:
xX'=-D+vD2—-A-F

Zu diesen Werten von x’ gehoren zwei parallele Geraden als Lésung von (58), welche wiederum mit
(59) auf die beiden parallelen Losungsgeraden von (1) abgebildet werden konnen.

Wenn A null ist, muss zwingend gelten C # 0
Sei also jetzt C # 0 (Fall @)

Dann multipliziert man (1) mit C und erhalt ganz ahnlich

(X2 +2-E-X+C-F=0 (60)

@i) - (BC g) | @) (61)

Die entscheidende Diskriminante ist jetzt

mit

4.(E2—C-F)

und die Riicktransformation erfolgt durch

<;> N ﬁ' (? _BC) ‘ (;;> (62)

Die Diskussion der Lésungen von (60) erfolgt vollkommen analog zum Fall (5)
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Damit sind die ,entarteten” parabolischen Falle @ und @ in eine Richtung abgehandelt: Ist (1)

quivalent zu (5) oder (6), dann gilt det = 0 und DET = 0 und die Lésungsmenge von (1) folgt
der gegebenen Beschreibung.

Nun miissen wir noch umgekehrt zeigen, dass im Falle von det = 0 und DET = 0 folgt, dass (1)

dquivalent ist zu (5) (im Falle von A # 0). Aus det = 0 und DET = 0 folgt aber nach (39) h; =0
und hp =0,somit B-E=C-Dund B-D = A- E. Das sind genau die Voraussetzungen dafiir,

dass die Transformationen (57) resp. (59) eine Aquivalenz der Losungsmengen von (1) und (5)
vermitteln!
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5 Die hyperbolischen Fille @ und

In den Fallen (7) und soll die Gleichung (1) aquivalent sein zu

)2 v
a2 b2

K (63)

mit a> > b?> > 0 und k € {0, 1}
Die Situation ist bis auf wenige Vorzeichenunterschiede vollig identisch mit derjenigen bei den
Ellipsen, sie lasst sich auf dieselbe Art behandeln.

Die Parameter u, v, d und e der Riicktransformation der Lésungskurve von (63) auf diejenige von
(1) werden genau gleich berechnet wie im elliptischen Fall, die Formeln (8), (19) und (20) sind hier
genauso glltig.

Im Fall (@) gibt es einen Vorzeichenunterschied bei der Berechnung von b?:

»_ —DET _ -DET
Tdet-o Ar- ()2 (13.1 = 64.1)
Tdet-A (AM)2 A (64.2)

Weil aber bei Hyperbeln gilt ¢ = a® + b? (statt ¢® = a®> — b® wie bei den Ellipsen) gelten die
Formeln fiir c2, € und p weiterhin. (14), (15) und (16) gelten also auch im Fall (7).

Im Fall (8), also fiir k = 0, setze man a2 = (A1)2 und b2 = —A1 - X». Die Lésungsmenge fiir (x'/y")
besteht dann aus den beiden Geraden

b2 -
y/::t\/?»/:i\/—)\l - x! (65)

die sich im Nullpunkt schneiden. (12) bildet diese beiden Geraden auf die Losungsmenge von (1)

ab im Fall (8).

Die folgende Seite zeigt den Output des Programms ,ellipt _hyperbol.ggb” in einem hyperbolischen
Fall.
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