
‘Half of the Speed’ in Relativity

Martin Gubler,  Gymnasium Frauenfeld, Frauenfeld, Switzerland

0. Starting point

In a elementary course on STR you have proven the theorem of the addition of velocities parallel to the 
relative motion of two systems S and S‘

  u = v⊕ u ' = v + u '

1+ v
c
⋅
u '
c

(1)

where v is the velocity of S’ relative to S, u‘ is the speed of some object X measured in S‘ and u is the 
speed of this same object X measured in S. 

1. ‘half of the speed’

I usually leave it as an exercise to the students to find the ‘half speed’ w with  w⊕w = v . To do so they 
have to solve a quadratic equation (or they let the CAS on their pocket calculator do the job ...).
The solution is  

  w =
v

1+ 1− v2 / c2
(2 )

As the velocitiy v decreases the root term approaches 1 and we have the ‘classic’ solution  w = v / 2 . 
Strangely this result seems to be widely unknown. The systems S and S‘ are moving in a completely 
symmetric way with relative velocities of  -w and w if observed from a third system S’‘ moving with w
relative to S. 
   In the following two pieces I would like to demonstrate the usefulness of this ‘half speed‘ w. In section 2 
we can avoid a lot of algebra using (2), and in section 3 we will establish new relations betweeen the 
‘classic’ formula for the kinetic energy and the corresponding formula in STR.

2. Max Born1 was probably the first to look at a completely inelastic collision of two bodies of the same 
restmass to derive the speed dependency of mass. Modern presentations of this idea are to be found in 
Sartori2 and Adams3, e.g. 
   In a system S two bodies move towards each other with momenta  mw·w  and  mw·(-w)  before their ine-
lastic collision. mw = m(w)  denotes the mass of the body when its speed is w. The total momentum is 
zero, and so, after the collision, we have a single mass M = M0 at rest.
   Now consider the same collision observed from a system S’ moving with -w relative to S. In S’, body 2 
is at rest and body 1 moves with v = w⊕w before the collision. After the collision, the velocity of M is w.
We write down the equations for the conservation of momentum and the conservation of mass as ob-
served in S’ :

  
mv ⋅v =Mw ⋅w (3)
mv + m0 =Mw (4 )



Using equation (2) and (4) to substitute w and Mw on the right side of (3) we immediately have 

  mv ⋅ 1−
v2

c2
=m0 (5 )

The algebraic effort is much greater if you substitute v by w⊕w on the left side of (3)  (cf 1,2,3).

3. It is far from being obvious that the relativistic expression for the kinetic energy

  Ekin = m0 ⋅ c
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approaches

  Ekin =
1
2
⋅m0 ⋅v

2 (7 )

if  v  is much smaller than c . One way to demonstrate this fact is to develop the bracket term of (6) into a 
power series and then to strip the terms of higher order. But there is no need to use this heavy calculus 
tool, and we can even win deeper insights by means of our equation (2).

Let us start with the equation that relates the total energy Etot, the rest energy E0 and the momentum p of 
a particle:

  Etot
2 = E0

2 + (p ⋅ c)2 (8 )

This is the Pythagorean theorem for the corresponding Epstein diagram 4,5 . (8) is equivalent to

        mv
2 ⋅ c4 = m0

2 ⋅ c4 + mv
2 ⋅v2 ⋅ c2 (9 )

Dividing by c2 and rearranging the terms we get

  mv
2 − m0

2( )⋅ c2 = mv
2 ⋅v2 (10 )

Dividing by  (mv + m0)  the left side yields the STR expression for the kinetic energy:

                         mv − m0( )⋅ c2 =
mv

2

mv +m0

⋅v2 =   mv

1+m0 / mv

⋅v2 (11)

Now we use  (5)  and  (2)  to develop (11) to

                     Ekin =  
mv

1+ 1− v2 / c2
⋅v2 = mv ⋅v ⋅

v
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= p ⋅w (12)

The last representation parallels the classical term

  Ekin =
1
2
⋅m0 ⋅v

2 = m0 ⋅v ⋅
v
2
= p ⋅w (13)



In both cases we have   Ekin = p·w , where p stands for the momentum and w for the ‘half speed’! Further 
we have the relations

                            

pSTR =mv ⋅ v =m0 ⋅ v ⋅
1
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(14 )
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(15 )

Now it is obvious that the STR expression for the kinetic energy comes close to the classic term if  v  is 
much smaller than the speed of light ! And we certainly do not get the STR expression just by replacing 
m0 by mv as sometimes suggested by students. Both factors  p  and  w  are changing when STR enters 
the stage.
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