
1.		Zeitdilatation	und	relativistischer	Dopplereffekt	
	
	
In	der	Akustik	muss	man	für	die	Berechnung	der	Frequenzänderung	zwei	Fälle	unterscheiden:	
	
a)		 der	Sender	ruht	im	Medium,	der	Empfänger	entfernt	sich	mit	der	Geschwindigkeit		v		von	der	Quelle.	Die		
	 entsprechende	Formel	ist	dann	

𝑓" 	= 	 𝑓% ·
𝑐 − 𝑣
𝑐

	

	
b)	 der	Empänger	ruht	im	Medium,	der	Sender	entfernt	sich	mit	der	Geschwindigkeit		v		vom	Empfänger.	Die	
	 Frequenzänderung	folgt	dann	der	Formel		

𝑓" 	= 	 𝑓% ·
𝑐
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Wir	setzen	nun	für	das	Licht	zusätzlich	voraus,	dass	die	Ausbreitungsgeschwindigkeit		c		des	Signals	in	allen	
Inertialsystemen	dieselbe	sei	und	dass	diese	unabhängig	sei	vom	Bewegungszustand	des	Senders,	ganz	so	wie	es	die	
Wellengleichung	von	Maxwell	fordert,	wie	es	in	der	Akustik	aber	nur	im	Bezugsystem	des	Ausbreitungsmediums	gilt.	Für	
Licht	soll	es	also,	im	Unterschied	zum	Schall,	kein	ausgezeichnetes	Bezugssystem	geben,	in	welchem	das	Trägermedium	
des	Signals	ruht.	
	
Wenn	es	kein	ausgezeichnetes	Bezugssystem	mehr	gibt	und	nur	noch	eine	Relativgeschwindigkeit	gemessen	werden	
kann	müssten	diese	beiden	Formeln	aber	dasselbe	Ergebnis	liefern!	Es	muss	also	irgendetwas	mit	den	Frequenzen	
geschehen	wenn	Sender	und	Empfänger	bewegt	sind	gegeneinander.	Wenn	sich	Frequenzen	ändern	sollen	muss	aber	
zwingend	etwas	mit	der	Zeit	geschehen,	das	ist	die	einzige	Grösse,	welche	bei	konstanter	Signalgeschwindigkeit	die	
Anzahl	der	gezählten	Schwingungen	beeinflussen	kann.	Wir	nehmen	also	an	dass	es	einen	von	der	Relativgeschwin-
digkeit		v		abhängigen	Faktor		r(v)		gibt	sodass	gilt	
	

∆𝑡- 	= 	∆𝑡. · 𝑟(𝑣)	
	
∆𝑡-	ist	dabei	ein	Zeitintervall	im	'schnellen'	System,	∆𝑡.	das	entsprechende	Zeitintervall	im	Ruhesystem	gemessen.	
𝑟(𝑣)	kann	nicht	1	sein	für		𝑣	 ≠ 	0	,	da	sich	die	beiden	Formeln	weiter	oben	unterscheiden.	Die	Zeit	kann	also	nicht	mehr	
gleich	schnell	laufen	in	zwei	zueinander	bewegten	Bezugssystemen,	wir	müssen	uns	von	Newtons	Absoluter	Zeit	
verabschieden!	
	
Für	die	Funktion	𝑟(𝑣)	machen	wir	keine	weiteren	Voraussetzungen.	Nur	zugunsten	der	einfacheren	Sprechweise	
nehmen	wir	mal	an,	dass	𝑟(𝑣)	kleiner	sei	als	1	für	𝑣	 ≠ 	0		(man	kann	den	ganzen	Text	auch	für	den	anderen	Fall	
formulieren	und	kommt	zu	demselben	Ergebnis!).	
	
Im	Fall	a)	bewegt	sich	der	Empfänger,	dann	tickt	also	seine	Uhr	um	den	Faktor		𝑟(𝑣)	langsamer.	Er	wird	entsprechend	
eine	grössere	Frequenz	messen,	in	seinen	langen	Sekunden	treffen	mehr	Schwingungen	ein.	Die	Formel	von	a)	müssen	
wir	somit	korrigieren	zu	
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Im	Fall	b)	ruht	der	Empfänger,	und	die	Uhr	des	schnellen	Senders	tickt	verlangsamt.	Dadurch	sinkt	aus	der	Sicht	des	
Empfängers	seine	Sendefrequenz,	und	wir	müssen	die	Formel	von	b)	korrigieren	zu	
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Wenn	sich	jetzt	die	beiden	Fälle	nicht	mehr	unterscheiden	dürfen	ergibt	sich	daraus	die	Gleichung	
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und	damit	
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Das	liefert	den	bekannten	Faktor	für	die	sogenannte	"Zeitdilatation".	Unser	Ziel	ist	aber	die	korrekte	Formel	für	den	
optischen	Dopplereffek:	Setzen	wir	diesen	Wurzelausdruck	für		𝑟(𝑣)	in	eine	der	beiden	korrigierten	Dopplerformeln	ein	
erhalten	wir	in	beiden	Fällen	
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Dabei	steht		v		für	die	Geschwindigkeit,	mit	der	sich	die	beiden	voneinander	entfernen.	
	
	
Das	Relativitätsprinzip,	also	die	Forderung,	dass	es	kein	ausgezeichnetes	"Äthersystem"	geben	soll	liefert	mit	der	
zusätzlichen	Annahme,	dass	die	Ausbreitungsgeschwindigkeit	des	Signals	unabhängig	sein	soll	vom	Bewegungszustand	
des	Senders,	sofort	die	Formeln	für	die	Zeitdilatation	und	den	relativistischen	Dopplereffekt.	Die	Lorentz-
Transformationen	werden	für	die	Herleitung	nicht	benötigt.	
	
	
	
	 	



2.		Die	relativistische	Addition	von	parallelen	Geschwindigkeiten	
	
	
Aus	der	relativistischen	Dopplerformel	gewinnen	wir	noch	die	Formel	für	die	Addition	von	parallelen	Geschwindig-
keiten.	
	
Es	bewege	sich	B	in	positiver	xA-Richtung	von	A	mit	der	Geschwindigkeit	v	relativ	zu	A,	und	es	bewege	sich	C	in	positiver	
xB-Richtung	von	B	mit	der	Geschwindigkeit	u	relativ	zu	B.	Die	beiden	x-Richtungen	sollen	wie	üblich	zusammenfallen.	
C	sende	nun	Strahlung	der	Frequenz		fC		in	Richtung	von	B	und	damit	auch	von	A.	Nach	dem	letzten	Abschnitt	empfängt	
B	diese	Strahlung	bei	einer	Frequenz	von	
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Mit	dieser	Frequenz	rauscht	die	Strahlung	an	B	vorbei	und	weiter	zu	A,	der	entsprechend	die	Frequenz	misst		
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Für	die	gesuchte	Geschwindigkeit		z		von	C	relativ	zu	A	gilt	andererseits	
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Setzt	man	die	beiden	Terme	für		fA		einander	gleich	so	erhält	man	nach	einigen	elementaren	Umformungen	das	Ergebnis	
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Sind		v		und		u		klein	gegenüber	der	Lichtgeschwindigkeit		c		so	unterscheidet	sich	das	Ergebnis	praktisch	nicht	von	der	
Geschwindigkeitsaddition	nach	Newton	und	Galilei.	
Setzt	man	für	eine	oder	auch	für	beide	der	Geschwindigkeiten		u		und		v		die	Lichtgeschwindigkeit		c		ein	so	liefert	die	
Formel	wieder	diese	Lichtgeschwindigkeit		c	.	Die	Rechnung	zeigt	somit	auch,	dass	die	getroffenen	Annahmen	nicht	in	
sich	widersprüchlich	sind.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Martin	Gubler,	20.	November	2020	


