
1.		Raum-Zeit-Diagramme	nach	Ernesto	Palumbo	Loedel	
	
	
Wir	starten	mit	einem	Diagramm,	in	welchem	Ereignisse	auf	einer	räumlichen	x-Koordinate	mit	ihrem	Zeitpunkt	
eingetragen	werden	können.	Dass	die	Zeitachse	und	die	Raumachse	senkrecht	aufeinander	stehen	hat	keine	besondere	
Bedeutung.	Wir	nennen	dieses	Diagramm	das	Bezugssystem	von	"Schwarz"	
	

	
	

Damit	wir	die	"Weltlinie"	eines	Lichtpulses	einzeichnen	können,	den	wir	vom	Koordinatenursprung	O	in	die	positive	
oder	negative	x-Richtung	losschicken,	müssen	wir	zuerst	noch	Einheiten	auf	den	beiden	Achsen	festlegen.	Wir	wählen	
"Sekunden"	für	die	Zeitachse	und	gleich	lange		"Lichtsekunden"	für	die	Streckenlängen.	Damit	bewegt	sich	Licht	immer	
parallel	zu	den	Hauptdiagonalen	des	Diagramms:	
	
	

	
Nun	nehmen	wir	noch	den	Beobachter	"Rot"	hinzu,	der	sich	für	Schwarz	mit	v	in	positiver	x-Richtung	bewegen	soll.	Nach	
Newton	und	Galilei	bewegt	sich	das	von	Schwarz	ausgesandte	Licht	für	Rot	mit	der	Geschwindigkeit	c	-	v	:	
	

	



Jetzt	wollen	wir	erreichen,	dass	sich	das	Licht	in	allen	Bezugssystemen	mit	derselben	Geschwindigkeit	c	fortpflanzen	
soll,	unabhängig	vom	Bewegungszustand	des	Senders.	Das	ist	hier	eine	axiomatische	Annahme.	Dafür	müssen	wir	die	
Skaleneinheiten	von	Rot	verändern,	wir	müssen	uns	von	Newtons	Absoluter	Zeit	und	seinem	Absoluten	Raum	
verabschieden!	Ein	erster	Versuch	könnte	so	aussehen:	
	

	
	
Das	ist	völlig	richtig,	und	damit	könnte	man	vielleicht	auch	arbeiten.	Eleganter	wird	die	Darstellung,	wenn	auch	für	Rot	
die	Sekunde	und	die	Lichtsekunde	gleich	lange	Skaleneinheiten	erhalten.	Das	ist	aber	nur	möglich,	wenn	die	rote	x-
Achse	abgekippt	wird.	Wir	erinnern	daran,	dass	der	Winkel	zwischen	der	Zeit-	und	Raumachse	in	einem	Bezugssystem	
keine	Bedeutung	hat,	er	ist	völlig	willkürlich.	Proijziert	wird	in	jedem	Fall	parallel	zu	den	Koordinatenachsen.	In	dieser	
zweiten	Darstellung	führen	Punkte	auf	dem	Lichtpfad	bei	der	Projektion	auf	die	Achsen	in	beiden	Systemen	zu	einem	
Rhombus:	
	

	
	

	
	
Es	ist	das	Ziel	des	nächsten	Abschnittes	herauszufinden,	wie	sich	die	Längen	der	schwarzen	und	der	roten	Einheits-
strecken	zueinander	verhalten	oder	wie	unterschiedlich	schnell	die	Schwarze	und	die	Rote	Zeit	läuft.	Dazu	machen	wir	
das	Raum-Zeit-Diagramm	zuerst	noch	ein	bisschen	komplizierter,	um	es	anschliessend	wieder	zu	vereinfachen:	Wir	
zeichnen	jetzt	zwei	Beobachter	("Rot"	und	"Grün"	)	ein,	die	sich	mit	den	Geschwindigkeiten		+v		respektive		-v		relativ	zu	
Schwarz	in	unserem	Diagramm	bewegen.	Für	Rot	und	Grün	mag	eine	andere	Zeit	verstrichen	sein,	wenn	für	Schwarz	
eine	Sekunde	vergangen	ist	-	wichtig	ist	aber,	dass	das	verstrichene	Zeitintervall	für	Rot	und	Grün	aus	Symmetrie-
gründen	dasselbe	ist	(Isotropie	des	Raumes)	!!		
	
	



	
	

In	allen	drei	Bezugssystemen	bewegt	sich	das	Licht	in	beiden	Richtungen	parallel	zu	den	Winkelhalbierenden	der	Achsen	
(egal	von	wem	es	ausgesendet	wird),	und	es	hat	in	allen	drei	Bezugssystemen	die	Geschwindigkeit		1ls/1s	=	1l	=	c	.	
	
	
Für	die	folgenden	Betrachtungen	lassen	wir	das	Schwarze	Bezugssystem	weg.	Auch	die	Rote	Raumachse	könnten	wir	
noch	weglassen,	wir	brauchen	sie	nicht.	Wichtig	ist	aber,	dass	die	Rote	und	die	Grüne	Zeitachse	gleich	skaliert	sind	!	
Dieser	symmetrische	Diagrammtyp	für	zwei	Bezugssysteme	heisst	"Loedel-Diagramm"	nach	Ernesto	Palumbo	Loedel,	
der	ihn	1948	in	den	"Anales	de	la	Sociedad	Cientifica	Argentina"	vorgestellt	hat.	Wir	heben	noch	hervor,	dass	in	der	
Figur	nur	zwei	verschiedene	Winkel	auftreten:	Die	Winkel	𝜓	sind	gleich	weil	die	Geschwindigkeiten	von	Rot	und	Grün	
für	Schwarz	dieselben	sind,	es	gilt	ja	|v|	=	tan(𝜓)	.	Die	Winkel	𝜑	sind	gleich	weil	sich	das	Licht	parallel	zu	den	
Winkelhalbierenden	bewegen	muss	und	weil	die	beiden	Winkelhalbierenden	senkrecht	stehen	aufeinander.	
	
	

	
	
	 	



2.		Die	Zeit-Dilatation	
	
	
Wir	betrachten	nun	ein	Experiment	im	System	von	Grün:	Am	Ort	d	ist	ein	Spiegel	fix	aufgestellt,	seine	gestrichelt	
gezeichnete	Weltlinie	ist	somit	parallel	zur	grünen	Zeitachse.	Zum	Zeitpunkt	t1	sendet	Grün	von	O	aus	einen	Lichtstrahl	
zu	diesem	Spiegel.	Dieser	kommt	zum	Zeitpunkt	t2	respektive	t'	dort	an	und	wird	refektiert.	Der	reflektierte	Strahl	
erreicht	den	Ausgangsort	zum	Zeitpunkt	t3.	Die	Zeiten	t1	und	t3	werden	von	Grün	mit	derselben,	in	O	ruhenden	Uhr	
gemessen.	Den	Zeitpunkt	t2	,	zu	welchem	der	Lichtstrahl	reflektiert	worden	ist,	kann	sich	Grün	leicht	ausrechnen:		
t2	=	(t1	+	t3)/2.	Das	kann	mit	der	Isotropie	des	Raumes	begründet	werden	(	gleiche	Zeit	für	den	Hin-	und	den	Rückweg	)	
oder	auch	geometrisch	aus	dem	Diagramm	(	t2-t'-t3	ist	ein	gleichschenkliges	Dreieck	im	rechtwinkligen	Dreieck	t1-t'-t3	.		
t2		ist	also	nach	dem	Satz	von	Thales	der	Mittelpunkt	des	Umkreises	vom	Dreieck	t1-t'-t3	).	

	
	

	
	
	
Jetzt	kommt	Rot	ins	Spiel.	Rot	und	Grün	haben	sich	in	O	getroffen,	und	dabei	haben	beide	ihre	Uhren	auf	null	gestellt.	
Der	Zeitpunkt	t1	wird	nun	so	gewählt,	dass	Rot	sich	genau	in	d		befindet	wenn	dort	der	Lichtstrahl	reflektiert	wird	(wie	
man	das	technisch	machen	kann	soll	weiter	unten	diskutiert	werden).	Für	Rot	sind	die	Reflexion	des	Lichtstrahls	und	der	
Vorbeiflug	des	Spiegels	gleichzeitige	Ereignisse,	die	zum	Zeitpunkt	t'		stattfinden,	für	Grün	findet	die	Reflexion	zum	
Zeitpunkt	t2	statt.	Wichtig	ist	jetzt	dass	die	Skaleneinheiten	auf	beiden	Achsen	dieselbe	Länge	haben!	Für	Rot	vergeht	
also	weniger	Zeit	zwischen	der	Begegnung	mit	Grün	in	O	und	dem	Ereignis	der	Reflexion	als	für	Grün.	"Schnelle	Uhren	
gehen	langsamer",	Newton's	Absolute	Zeit	ist	nicht	länger	haltbar.	
	
Aber	auch	quantitativ	kann	man	den	Faktor	der	sogenannten	Zeitdilatation	aus	diesem	Diagramm	leicht	berechnen.	Die	
Idee	stammt	von	Bondi,	aber	erst	in	der	Darstellung	mit	einem	Loedel-Diagramm	stimmt	alles	auch	geometrisch.	Im	
Minkowski-Diagramm	ist	die	Darstellung	ziemlich	gequält	(siehe	zB	N.M.J.Woodhouse,	"Special	Relativity",	p.66).	
	
Das	Dreieck		O-t1-t'		ist	ähnlich	zum	Dreieck	O-t'-t3	(	beide	haben	den	Winkel	bei	O	und	den	Winkel	𝜑	gemeinsam	).	
Somit	ist		t'	=	k·t1		und	t3	=	k·t'	,	somit		t3	=	k

2·t1			
Nun	berechnen	wir	zuerst	den	Zusammenhang	zwischen	dem	Faktor		k		und	der	Relativgeschwindigkeit		v		der	beiden	
Bezugssysteme:	
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Löst	man	diese	Gleichung	für		v	,	k	und	c		nach		k		auf	so	erhält	man	
	

𝑘	 = 	
𝑐	 + 	𝑣
𝑐	 − 	𝑣

	

	
Das	ist	Bondi's		k-Faktor	(Herrmann	Bondi:	"Relativity	and	Common	Sense",	Doubleday	&	Company,	New	York	1964).	
 
Damit	können	wir	nun	die	Beziehung	zwischen		t2		und		t'		bestimmen:	
	
Es	ist		t'	=	k·t1			und		t2	=	(t1	+	k

2·t1)/2	.	Daraus	erhalten	wir	für	das	Verhältnis	von	t'	zu	t2	
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Also	

∆𝒕	 = 	∆𝒕 · 𝟏 −	
𝒗𝟐

𝒄𝟐
	

	
	
	
	
	
Wie	kann	man	technisch	erreichen,	dass	Rot	genau	dann	beim	Spiegel	vorbeifliegt	wenn	der	Lichtpuls	dort	reflektiert	
wird	?	Eine	simple	Variante	besteht	darin,	dass	Grün	die	Relativgeschwindigkeit	von	Rot	misst	und	sich	daraus	und	aus	
dem	Laufweg	d	des	Lichts	ausrechnet,	wann	das	der	Fall	sein	muss	und	t1	entsprechend	wählt:			t1		=	d/v	–	d/c	
Komplizierter	könnte	man	es	auch	so	machen,	dass	Grün	dauernd	ein	Signal	zum	Spiegel	schickt,	welches	(wie	die	GPS-
Signale)	einen	Zeitstempel	aufmoderiert	hat.	Fliegt	Rot	am	Spiegel	vorbei	löst	er	dort	über	eine	Lichtschranke	eine	Kerr-
Zelle	aus,	und	erst	jetzt	gelangt	das	Licht	vom	Spiegel	zurück	nach	O.	Grün	misst	dann	nicht	nur	die	erste	Ankunftszeit	t3		
des	Lichts,	sondern	kann	aus	der	Modulation	des	ankommenden	Lichts	auch	bestimmen,	wann	dieses	erste	durch-
gelassenen	Licht	ursprünglich	ausgesandt	worden	ist,	also	t1	.	
	
	
	
	
	
	
	 	



3.		Der	relativistische	Dopplereffekt	
	
	
In	der	Akustik	muss	man	für	die	Berechnung	der	Frequenzänderung	zwei	Fälle	unterscheiden.	
	
a)		 Der	Sender	ruht	im	Medium,	der	Empfänger	entfernt	sich	mit	der	Geschwindigkeit		v		von	der	Quelle.	Die		
	 entsprechende	Formel	ist	dann	
	

𝑓E 	= 	 𝑓F ·
𝑐 − 𝑣
𝑐

	

	
b)	 Der	Empfänger	ruht	im	Medium,	der	Sender	entfernt	sich	mit	der	Geschwindigkeit		v		vom	Empfänger.	Die	
	 Frequenzänderung	folgt	dann	der	Formel		
	

𝑓E 	= 	 𝑓F ·
𝑐

𝑐 + 𝑣
	

	
Wenn	es	kein	ausgezeichnetes	Bezugssystem	mehr	gibt,	die	Lichtgeschwindigkeit	überall	denselben	Wert	haben	soll	und	
nur	noch	eine	Relativgeschwindigkeit	gemessen	werden	kann	müssen	diese	beiden	Formeln	zusammenfallen!	Das	tun	
sie	tatsächlich	auch,	wenn	wir	die	Zeitdilatation	aus	dem	zweiten	Abschnitt	berücksichtigen:	
	

Im	Fall	a)	bewegt	sich	der	Empfänger,	seine	Uhr	tickt	also	um	den	Faktor			𝑟	 = 1 −	<
6

=6
			langsamer.	Er	wird	

entsprechend	eine	grössere	Frequenz	messen,	in	seinen	langen	Sekunden	treffen	mehr	Schwingungen	ein.	Die	Formel	
von	a)	müssen	wir	korrigieren	zu	
	

𝑓E 	= 	 𝑓F ·
𝑐 − 𝑣
𝑐

·
1
𝑟
	

	
Im	Fall	b)	ruht	der	Empfänger,	die	Uhr	des	schnellen	Senders	tickt	verlangsamt.	Dadurch	sinkt	aus	der	Sicht	des	
Empfängers	seine	Sendefrequenz,	und	wir	müssen	die	Formel	von	b)	korrigieren	zu	
	

𝑓E 	= 	 𝑓F ·
𝑐

𝑐 + 𝑣
· 𝑟	

	
Setzt	man	für	r	den	Wurzelterm	ein	führen	tatsächlich	beide	Fälle	nach	wenigen	Umformungen	zu	demselben	Resultat	
	

𝒇𝑬 	= 	 𝒇𝒔 ·
𝒄	– 𝒗
𝒄 + 𝒗

	

	
Das	ist	die	optische	(longitudinale)	Dopplerformel,	die	für	die	Ausbreitung	aller	elektromagnetischer	Wellen	gilt.	Der	
Äther	ist	obsolet,	es	kommt	nur	noch	auf	die	Relativgeschwindigkeiten	von	Sender	und	Empfänger	an.	
	
Es	ist	auch	der	umgekehrte	Weg	gangbar:	Man	verlangt	dass	beide	Formeln	zu	demselben	Ergebnis	führen	sollen	und	
berechnet	daraus	den	Faktor		r		der	Zeitdilatation.	Auch	in	diesem	Fall	verlangt	man,	dass	sich	die	Strahlung	des	
schnellen	Senders	sich	mit	der	Lichtgeschwindigkeit	des	Ruhesystems	des	Empfängers	ausbreitet,	also	dass	die	Licht-
geschwindigkeit	vom	Bewegungszustand	des	Empfängers	unabhängig	ist.	Dieser	Weg	wird	in	der	"Miniatur	01"	
beschritten.	
	
	 	



4.		Die	relativistische	Addition	von	parallelen	Geschwindigkeiten	
	
	
Aus	der	relativistischen	Dopplerformel	gewinnen	wir	noch	die	Formel	für	die	Addition	von	parallelen	Geschwindig-
keiten.	Diese	Rechnung	findet	man	auch	im	Buch	"It's	About	Time"	von	N.	David	Mermin,	Princeton	University	Press	
2005.	
	
Es	bewege	sich	B	in	positiver	x-Richtung	von	A	mit	der	Geschwindigkeit	v	relativ	zu	A,	und	es	bewege	sich	C	in	positiver	
x-Richtung	von	B	mit	der	Geschwindigkeit	u	relativ	zu	B.	Die	beiden	x-Richtungen	sollen	wie	üblich	zusammenfallen.	
C	sende	nun	Strahlung	der	Frequenz		fC		in	Richtung	von	B	und	damit	auch	von	A.	Nach	dem	letzten	Abschnitt	empfängt	
B	diese	Strahlung	bei	einer	Frequenz	von	
	

𝑓L 	= 	
𝑐	– 	𝑢
𝑐 + 𝑢

· 𝑓N 	

	
Mit	dieser	Frequenz	rauscht	die	Strahlung	an	B	vorbei	und	weiter	zu	A,	der	entsprechend	die	Frequenz	misst		
	

𝑓O 	= 	
𝑐	– 	𝑣
𝑐 + 𝑣

· 𝑓L 	=
𝑐	– 	𝑣
𝑐 + 𝑣

·
𝑐	– 	𝑢
𝑐 + 𝑢

· 𝑓N		

	
Für	die	gesuchte	Geschwindigkeit		z		von	C	relativ	zu	A	gilt	andererseits	
	

𝑓O 	= 	
𝑐	– 	𝑧
𝑐 + 𝑧

· 𝑓N 	

	
Setzt	man	die	beiden	Terme	für		fA		einander	gleich	so	erhält	man	nach	einigen	elementaren	Umformungen	das	Ergebnis	
	

𝒛	 = 	
𝒗	 + 	𝒖

𝟏	 + 	𝒗 · 𝒖𝒄𝟐
	

	
Sind	v	und	u	klein	gegenüber	der	Lichtgeschwindigkeit		c		so	unterscheidet	sich	das	Ergebnis	praktisch	nicht	von	der	
Geschwindigkeitsaddition	nach	Newton	und	Galilei.	Setzt	man	für	eine	oder	auch	für	beide	der	Geschwindigkeiten		u		
und		v		die	Lichtgeschwindigkeit		c		ein	so	liefert	die	Formel	wieder	diese	Lichtgeschwindigkeit		c	.	Die	Rechnung	zeigt	
somit	auch,	dass	die	getroffenen	Annahmen	nicht	schon	in	sich	widersprüchlich	sind.	
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