1. Raum-Zeit-Diagramme nach Ernesto Palumbo Loedel

Wir starten mit einem Diagramm, in welchem Ereignisse auf einer raumlichen x-Koordinate mit ihrem Zeitpunkt
eingetragen werden kdnnen. Dass die Zeitachse und die Raumachse senkrecht aufeinander stehen hat keine besondere
Bedeutung. Wir nennen dieses Diagramm das Bezugssystem von "Schwarz"
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Damit wir die "Weltlinie" eines Lichtpulses einzeichnen kénnen, den wir vom Koordinatenursprung O in die positive
oder negative x-Richtung losschicken, miissen wir zuerst noch Einheiten auf den beiden Achsen festlegen. Wir wahlen
"Sekunden" fur die Zeitachse und gleich lange "Lichtsekunden" fiir die Streckenlangen. Damit bewegt sich Licht immer
parallel zu den Hauptdiagonalen des Diagramms:
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Nun nehmen wir noch den Beobachter "Rot" hinzu, der sich fiir Schwarz mit v in positiver x-Richtung bewegen soll. Nach
Newton und Galilei bewegt sich das von Schwarz ausgesandte Licht fiir Rot mit der Geschwindigkeit c- v :
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Jetzt wollen wir erreichen, dass sich das Licht in allen Bezugssystemen mit derselben Geschwindigkeit c fortpflanzen
soll, unabhangig vom Bewegungszustand des Senders. Das ist hier eine axiomatische Annahme. Dafiir miissen wir die
Skaleneinheiten von Rot verdndern, wir missen uns von Newtons Absoluter Zeit und seinem Absoluten Raum
verabschieden! Ein erster Versuch kénnte so aussehen:
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Das ist vollig richtig, und damit kdnnte man vielleicht auch arbeiten. Eleganter wird die Darstellung, wenn auch fiir Rot
die Sekunde und die Lichtsekunde gleich lange Skaleneinheiten erhalten. Das ist aber nur moglich, wenn die rote x-
Achse abgekippt wird. Wir erinnern daran, dass der Winkel zwischen der Zeit- und Raumachse in einem Bezugssystem
keine Bedeutung hat, er ist vollig willkirlich. Proijziert wird in jedem Fall parallel zu den Koordinatenachsen. In dieser
zweiten Darstellung fihren Punkte auf dem Lichtpfad bei der Projektion auf die Achsen in beiden Systemen zu einem
Rhombus:
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Es ist das Ziel des nachsten Abschnittes herauszufinden, wie sich die Langen der schwarzen und der roten Einheits-
strecken zueinander verhalten oder wie unterschiedlich schnell die Schwarze und die Rote Zeit lauft. Dazu machen wir
das Raum-Zeit-Diagramm zuerst noch ein bisschen komplizierter, um es anschliessend wieder zu vereinfachen: Wir
zeichnen jetzt zwei Beobachter ("Rot" und "Griin" ) ein, die sich mit den Geschwindigkeiten +v respektive -v relativ zu
Schwarz in unserem Diagramm bewegen. Fir Rot und Griin mag eine andere Zeit verstrichen sein, wenn fiir Schwarz
eine Sekunde vergangen ist - wichtig ist aber, dass das verstrichene Zeitintervall fiir Rot und Griin aus Symmetrie-
grinden dasselbe ist (Isotropie des Raumes) !!
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In allen drei Bezugssystemen bewegt sich das Licht in beiden Richtungen parallel zu den Winkelhalbierenden der Achsen
(egal von wem es ausgesendet wird), und es hat in allen drei Bezugssystemen die Geschwindigkeit 1ls/1s=1l=c.

Fiir die folgenden Betrachtungen lassen wir das Schwarze Bezugssystem weg. Auch die Rote Raumachse kénnten wir
noch weglassen, wir brauchen sie nicht. Wichtig ist aber, dass die Rote und die Griine Zeitachse gleich skaliert sind !
Dieser symmetrische Diagrammtyp fiir zwei Bezugssysteme heisst "Loedel-Diagramm" nach Ernesto Palumbo Loedel,
der ihn 1948 in den "Anales de la Sociedad Cientifica Argentina" vorgestellt hat. Wir heben noch hervor, dass in der
Figur nur zwei verschiedene Winkel auftreten: Die Winkel Y sind gleich weil die Geschwindigkeiten von Rot und Griin
fir Schwarz dieselben sind, es gilt ja |v| = tan(y) . Die Winkel ¢ sind gleich weil sich das Licht parallel zu den
Winkelhalbierenden bewegen muss und weil die beiden Winkelhalbierenden senkrecht stehen aufeinander.
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2. Die Zeit-Dilatation

Wir betrachten nun ein Experiment im System von Griin: Am Ort d ist ein Spiegel fix aufgestellt, seine gestrichelt
gezeichnete Weltlinie ist somit parallel zur griinen Zeitachse. Zum Zeitpunkt t; sendet Griin von O aus einen Lichtstrahl
zu diesem Spiegel. Dieser kommt zum Zeitpunkt t, respektive t' dort an und wird refektiert. Der reflektierte Strahl
erreicht den Ausgangsort zum Zeitpunkt t;. Die Zeiten t; und t; werden von Grin mit derselben, in O ruhenden Uhr
gemessen. Den Zeitpunkt t,, zu welchem der Lichtstrahl reflektiert worden ist, kann sich Griin leicht ausrechnen:

t, = (t; + t3)/2. Das kann mit der Isotropie des Raumes begriindet werden ( gleiche Zeit fir den Hin- und den Rickweg )
oder auch geometrisch aus dem Diagramm ( t,-t"-t; ist ein gleichschenkliges Dreieck im rechtwinkligen Dreieck t;-t'-t5 .
t, ist also nach dem Satz von Thales der Mittelpunkt des Umkreises vom Dreieck t;-t"-t3 ).

Jetzt kommt Rot ins Spiel. Rot und Griin haben sich in O getroffen, und dabei haben beide ihre Uhren auf null gestellt.
Der Zeitpunkt t; wird nun so gewahlt, dass Rot sich genau in d befindet wenn dort der Lichtstrahl reflektiert wird (wie
man das technisch machen kann soll weiter unten diskutiert werden). Flr Rot sind die Reflexion des Lichtstrahls und der
Vorbeiflug des Spiegels gleichzeitige Ereignisse, die zum Zeitpunkt t' stattfinden, fir Grin findet die Reflexion zum
Zeitpunkt t, statt. Wichtig ist jetzt dass die Skaleneinheiten auf beiden Achsen dieselbe Lange haben! Fir Rot vergeht
also weniger Zeit zwischen der Begegnung mit Griin in O und dem Ereignis der Reflexion als fiir Griin. "Schnelle Uhren
gehen langsamer", Newton's Absolute Zeit ist nicht langer haltbar.

Aber auch quantitativ kann man den Faktor der sogenannten Zeitdilatation aus diesem Diagramm leicht berechnen. Die
Idee stammt von Bondi, aber erst in der Darstellung mit einem Loedel-Diagramm stimmt alles auch geometrisch. Im
Minkowski-Diagramm ist die Darstellung ziemlich gequalt (siehe zB N.M.J.Woodhouse, "Special Relativity", p.66).

Das Dreieck O-t;-t' ist dhnlich zum Dreieck O-t-t; ( beide haben den Winkel bei O und den Winkel ¢ gemeinsam ).
Somitist t'=k-t; und t;=k-t', somit t;= k2~t1
Nun berechnen wir zuerst den Zusammenhang zwischen dem Faktor k und der Relativgeschwindigkeit v der beiden
Bezugssysteme:
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Lost man diese Gleichung fiir v, kund ¢ nach k auf so erhalt man

Das ist Bondi's k-Faktor (Herrmann Bondi: "Relativity and Common Sense", Doubleday & Company, New York 1964).

Damit kénnen wir nun die Beziehung zwischen t, und t' bestimmen:

Esist t'=k't; und t,=(t; + kz-tl)/z . Daraus erhalten wir flr das Verhéltnis von t' zu t,
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Also

Wie kann man technisch erreichen, dass Rot genau dann beim Spiegel vorbeifliegt wenn der Lichtpuls dort reflektiert
wird ? Eine simple Variante besteht darin, dass Griin die Relativgeschwindigkeit von Rot misst und sich daraus und aus
dem Laufweg d des Lichts ausrechnet, wann das der Fall sein muss und t; entsprechend wahlt: t; =d/v-d/c
Komplizierter konnte man es auch so machen, dass Griin dauernd ein Signal zum Spiegel schickt, welches (wie die GPS-
Signale) einen Zeitstempel aufmoderiert hat. Fliegt Rot am Spiegel vorbei |6st er dort Giber eine Lichtschranke eine Kerr-
Zelle aus, und erst jetzt gelangt das Licht vom Spiegel zuriick nach O. Griin misst dann nicht nur die erste Ankunftszeit t;
des Lichts, sondern kann aus der Modulation des ankommenden Lichts auch bestimmen, wann dieses erste durch-
gelassenen Licht urspriinglich ausgesandt worden ist, also t; .



3. Der relativistische Dopplereffekt

In der Akustik muss man fiir die Berechnung der Frequenzdanderung zwei Falle unterscheiden.

a) Der Sender ruht im Medium, der Empfanger entfernt sich mit der Geschwindigkeit v von der Quelle. Die
entsprechende Formel ist dann
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b) Der Empfanger ruht im Medium, der Sender entfernt sich mit der Geschwindigkeit v vom Empféanger. Die
Frequenzanderung folgt dann der Formel

Wenn es kein ausgezeichnetes Bezugssystem mehr gibt, die Lichtgeschwindigkeit Giberall denselben Wert haben soll und
nur noch eine Relativgeschwindigkeit gemessen werden kann miissen diese beiden Formeln zusammenfallen! Das tun
sie tatsachlich auch, wenn wir die Zeitdilatation aus dem zweiten Abschnitt beriicksichtigen:
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Im Fall a) bewegt sich der Empfédnger, seine Uhr tickt also um den Faktor r = ’1 - :—2 langsamer. Er wird

entsprechend eine grossere Frequenz messen, in seinen langen Sekunden treffen mehr Schwingungen ein. Die Formel
von a) missen wir korrigieren zu
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Im Fall b) ruht der Empfanger, die Uhr des schnellen Senders tickt verlangsamt. Dadurch sinkt aus der Sicht des
Empfangers seine Sendefrequenz, und wir missen die Formel von b) korrigieren zu
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Setzt man fir r den Wurzelterm ein fiihren tatsachlich beide Fille nach wenigen Umformungen zu demselben Resultat
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fE = fs'
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Das ist die optische (longitudinale) Dopplerformel, die fiir die Ausbreitung aller elektromagnetischer Wellen gilt. Der
Ather ist obsolet, es kommt nur noch auf die Relativgeschwindigkeiten von Sender und Empfinger an.

Es ist auch der umgekehrte Weg gangbar: Man verlangt dass beide Formeln zu demselben Ergebnis fiihren sollen und
berechnet daraus den Faktor r der Zeitdilatation. Auch in diesem Fall verlangt man, dass sich die Strahlung des
schnellen Senders sich mit der Lichtgeschwindigkeit des Ruhesystems des Empfangers ausbreitet, also dass die Licht-
geschwindigkeit vom Bewegungszustand des Empfangers unabhangig ist. Dieser Weg wird in der "Miniatur 01"
beschritten.



4. Die relativistische Addition von parallelen Geschwindigkeiten

Aus der relativistischen Dopplerformel gewinnen wir noch die Formel fiir die Addition von parallelen Geschwindig-
keiten. Diese Rechnung findet man auch im Buch "It's About Time" von N. David Mermin, Princeton University Press
2005.

Es bewege sich B in positiver x-Richtung von A mit der Geschwindigkeit v relativ zu A, und es bewege sich C in positiver
x-Richtung von B mit der Geschwindigkeit u relativ zu B. Die beiden x-Richtungen sollen wie tiblich zusammenfallen.

C sende nun Strahlung der Frequenz f¢ in Richtung von B und damit auch von A. Nach dem letzten Abschnitt empfangt
B diese Strahlung bei einer Frequenz von
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Mit dieser Frequenz rauscht die Strahlung an B vorbei und weiter zu A, der entsprechend die Frequenz misst
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Fiir die gesuchte Geschwindigkeit z von C relativ zu A gilt andererseits
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Setzt man die beiden Terme fiir f, einander gleich so erhdlt man nach einigen elementaren Umformungen das Ergebnis
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Sind v und u klein gegeniber der Lichtgeschwindigkeit ¢ so unterscheidet sich das Ergebnis praktisch nicht von der
Geschwindigkeitsaddition nach Newton und Galilei. Setzt man fiir eine oder auch fiir beide der Geschwindigkeiten u
und v die Lichtgeschwindigkeit ¢ ein so liefert die Formel wieder diese Lichtgeschwindigkeit c . Die Rechnung zeigt
somit auch, dass die getroffenen Annahmen nicht schon in sich widerspriichlich sind.

Martin Gubler, 20. November 2020



