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A1 Der Viererort X

Die Lorentz-Transformationen beschreiben, wie man die Koordinaten (t,x,y,z), die man in einem Bezugssystem S einem
Ereignis zuordnet, in die Koordinaten (t',x',y',z') umrechnet, welche im Bezugssystem S' zu demselben Ereignis gehoren.
Sie sind durch die folgenden Gleichungen gegeben [1 - 20.5] :

/ x' , X
N L A v =% (t-5-3)
x =Yy (X' + By-c-t') X' =y, (x = By-c-t)
(1.1)
y=y Y=y
z =27 zZ =z
1
. . .. v\ 2 v
y und B sind dabei die bekannten Abkiirzungen y = y, = (1 _c_Z) und f=p0,= - (1.2)

Die beiden Bezugssysteme (oder Koordinatensysteme) sind dabei immer speziell ausgerichtet: Die beiden x-Achsen
liegen aufeinander, die beiden y- und die beiden z-Achsen sind stets parallel zueinander, und die Geschwindigkeit von S'
aus der Sicht von S hat nur eine x-Komponente : ¥ = (v, 0,0). Zudem wurden bei der Begegnung der beiden
Koordinaten-Nullpunkte die dortigen Mutteruhren in beiden Bezugssystemen auf null gestellt; anschliessend wurden alle
anderen Uhren im jeweiligen Bezugssystem mit ihrer Mutteruhr synchronisiert (siehe [1 - 20]).

Die Gleichungen (1.1) lassen sich unter Verwendung der Lorentz-Matrix L elegant zusammenfassen:

c-t y -y 0 0 c-t
XV _[-v-B y 0 0 | «x 13
y' 0 0 10 y (1.3)
z' 0 0 0 1 z

Die Zeitkomponente wird mit der Lichtgeschwindigkeit ¢ multipliziert damit alle 4 Komponenten dieselben Einheiten
haben. Die Spaltenvektoren, welche die Koordinaten eines Ereignisses zusammenfassen, heissen der Viererort dieses
Ereignisses und werden mit X respektive X' bezeichnet. Mit diesen Namen lassen sich (1.1) und (1.3) noch kiirzer
schreiben:

X =L-X (1.4)

Die inverse Transformation benutzt die inverse Matrix L~!, die sich von L nur darin unterscheidet, dass die Minus-
zeichen verschwunden sind. Die Riicktransformation ldsst sich so kurz schreiben als

X=LtX% (1.5)
Vektoren, die sich beim Ubergang vom Bezugssystem S zum Bezugssystem S' auf diese Art transformieren, nennen wir
allgemein Vierervektoren.
Den Viererort oder die Viererposition X schreiben wir auchmit X = (c¢-t, X¥). Der Term c -t ist die zeitliche

Komponente, der 3d-Vektor X die riumliche Komponente des Vierervektors. Ein Vierervektor ist immer als Matrix mit
einer Spalte und vier Zeilen aufzufassen.



A2 Linearkombinationen von Vierervektoren

Wegen der Linearitit der Abbildung durch Multiplikation mit der Matrix L ist mit den Vierervektoren X und Y auch
jeder Vektor
m-X+n-Y

ein Vierervektor, wenn m und n Konstanten sind, die in allen Inertialsystemen denselben Wert haben.
Damit ist auch der Vektor AX = X(t,) — X(t;) = (c-At, AxX) als Differenz von Vierervektoren ein Vierervektor.
Mit den relativistischen Invarianten m, und g, werden wir so aus der Vierergeschwindigkeit U den Viererimpuls

P = mg - U und den Ladungs-Stromdichte-Vektor | = g, - U gewinnen. In C32 wird gezeigt, wie sich der gesamte
Viererstrom in einem stromfithrenden Draht als Summe von zwei elementareren Viererstromen denken lasst.



A3 Die Ableitung nach der Eigenzeit 7 und die Vierergeschwindigkeit U

Wenn wir den Vierer-Ortsvektor X = (c-t, X¥) nach der Zeit t ableiten erhalten wir den Vektor (¢, U ), wo u die
Geschwindigkeit beschreibt, mit der sich eine Position ¥ im System S éndert (der Variablenname v bleibt reserviert fiir
die Relativgeschwindigkeit der beiden Bezugssysteme). Wir erhalten damit aber keinen Vierervektor, schon die erste
Komponente transformiert sich nicht wie verlangt. Im Allgemeinen gilt nimlich

y-c—y-B-u, # c
wie man zum Beispiel durch Einsetzen von u = (0, ¢/2, ¢/2) sofort sieht.
Man kann auch nicht erwarten, dass die Ableitung nach der Zeit t in einem beliebigen Koordinatensystem einen
Vierervektor liefert, da ja die Zeit in jedem Bezugssystem mit einer anderen Geschwindigkeit ablduft. Es gibt aber ein
Bezugssystem, welches in dieser Hinsicht ausgezeichnet ist : Es ist dasjenige, in welchem das bewegte Objekt momentan

gerade ruht, das sogenannte Eigensystem des bewegten Objekts (Englisch: The comoving inertial frame). Fiir alle
Bezugssysteme gilt

At? — Ax? —Ay? —Az? = A2 —0—-0—-0 = At'? — Ax'?> — Ay'? — AZ? 3.1
y Yy

Das Eigenzeit-Intervall At ist damit eine relativistische Invariante. Damit ist nach A2 der Vektor A—lT-AX ebenfalls

ein Vierervektor, und zwar fiir jedes noch so kleine Zeitintervall At . Das gilt demnach auch im Limes fiir At — 0, also
fiir die Ableitung des Viererortes nach der Eigenzeit. Wir definieren daher die Vierergeschwindigkeit U durch

U=lm= =2 (3.2)

Nun gilt fiir jedes Koordinatensystem S , dass alle anderen Zeiten langsamer laufen als die eigene. (3.1) zeigt deutlich,
dass At grosseristals At . Esist also

At = At- 1—ﬁ = At /vy, und daher — =y, 3.3)

c2
Mit der Kettenregel 14sst sich damit die Ableitung nach der Eigenzeit 7 gut berechnen:
d d dt d d S N

U=—X) = (X7 = vu ;X)) =y t,x) =y (u) (3.4)
U =y, (c,d) istalso die gesuchte Vierergeschwindigkeit. Zudem haben wir gesehen, dass die Ableitung eines
Vierervektors nach der Eigenzeit t ganz allgemein wieder einen Vierervektor liefert, und wir haben weiter gelernt, wie
wir diese Ableitung bilden konnen.
Es muss noch betont werden, dass die Vierergeschwindigkeit eine technische Hilfsgrosse ist. Sie hat keine Entsprechung

in der physikalischen Realitdt in dem Sinne, dass sie gemessen werden kdnnte. Gemessen werden weiterhin nur 3d-
Geschwindigkeitsvektoren.

Die Eigengeschwindigkeit eines Objektes ist immer U = y, - (¢ ,6) =1-(c ,6) = (c,0,0,0)T. 3.5

Der hochgestellte Buchstaben T steht dabei fiir die Transposition des Zeilenvektors in einen Spaltenvektor.



A4 Der Viererimpuls P

Wenn wir den Vierervektor der Geschwindigkeit mit der invarianten Ruhemasse m, multiplizieren erhalten wir nach A2
wieder einen Vierervektor. In diesem Fall ist das der Viererimpuls

— 1 -
Po=myU=mg p(c, )= (> Ep, B) (1)

Der Dreiervektor p ist hier schon der nach SRT korrigierte Impulsvektor p = y, - m, - U , und wir haben zudem die
Beziehung E;,; = 7, - Mg - c? verwendet.

A5 Der Viererstrom |

Wenn man die Vierergeschwindigkeit U mit der im Ruhesystem der Ladungen gemessenen Ladungsdichte p,
multipliziert erhédlt man den Vierervektor der Ladungs- und Stromdichte oder kiirzer den Viererstrom

J = 0 U =07, (i) (5.1)
Diese Darstellung gilt fiir eine 'Ladungswolke', die sich kompakt mit der Geschwindigkeit & bewegt. In einem Draht

bewegen sich aber im Laborsystem nur die Leitungselektronen, wahrend die gesamte Ladungsdichte null ist. Es nimmt
also nur die Halfte der Ladungstriger an der Bewegung teil. Dort gilt die allgemeinere Darstellung

J =(p-c, ) (5.2)
wo p die im aktuellen Bezugssystem gemessene gesamte Ladungsdichte ist (die in einem stromfiihrenden Leiter ja null

sein kann) und J den Stromdichtevektor bezeichnet. j, - A, ist die Stromstiirke I, in der x-Richtung, wenn A, den
Leiterquerschnitt und u, die Geschwindigkeit der Ladungstréger in der x-Richtung bezeichnen (= C32).

A6 Die Viererkraft K

Nach A3 ist die Ableitung eines Vierervektors nach der Eigenzeit wieder ein Vierervektor. Leiten wir den Viererimpuls
nach der Eigenzeit t ab erhalten wir die Viererkraft K :

- 4 e a4 - .21 3) = o .(Ll.3E dp
K = dr(P) - dt(P) dr 14 dt(P) 14 dt(c E.p)=v (c dt ’ dt (6.1)
Nun ist definitionsgemaéss % = f , WO f fiir den gewohnlichen 3d-Kraftvektor steht. Und fiir die Leistung % gilt
ebenfalls definitionsgemass
dE 2 2 dx 2
E—f-u—f-a oder dE = f-dx (6.2)
Damit konnen wir fiir die Viererkraft K schreiben
- 4 — . (L4 a1 25 2
K=<@) =y G2, %)= y-Cfi, f) (63)

Mit E bezeichnen wir dabei immer die Gesamtenergie E;,; . Der Buchstabe F bleibt fiir die Matrix reserviert, mit der
wir das elektromagnetische Feld beschreiben.



A7 Die Viererbeschleunigung A

Die Ableitung der Vierergeschwindigkeit nach der Eigenzeit T liefert die Viererbeschleunigung
d d dt d d ~ d N d o
A=2W) = 2W)-S =y2W) =y (ci) =y (500 (i) +y-5(ci)) (D)

Wir miissen also y nach t ableiten:

w = [(1_?_2)7] - [(1_3_2)_5]'% B _5[(1‘%)_1‘(‘1—3)'5 =yleticd (2)

wo d = Z—l: der gewohnliche 3d-Beschleunigungsvektor ist. Damit ldsst sich (7.1) fortsetzen zu

d d — d — — — - — -
A=2W) =y (@ (cl) +y-2(ci) =yt c?T-d - (cl) +y* (0,0 (73)
Allein aufgrund der Definition gilt in der SRT die Beziehung K = m, - A :
d d d
K = E(P) = E(mo'U) = mo‘E(U) = my-4 (7.4)

Wenn wir jetzt (6.3) mit (7.3) kombinieren erhalten wir

1 dE

";_’:) = y.(l.f.a’ *) =my- [y*-c2-d-d-(cd) + y%-(0,d)] (7.5)

c

Eine genauere Betrachtung von (7.5) zeigt, dass in der SRT die Kraft f und die Beschleunigung @ nicht mehr parallel
sein miissen !

Wenn % und d parallel sind ist nach (7.5) auch f parallel zu @ . Die zeitliche Komponente von (7.5) liefert uns dann
% =fi=y3m-u-d
und es folgt

-

f=y3my-a (7.6)
In diesem Fall einer linearen Beschleunigung hat man um 1905 herum noch von der 'longitudinalen Masse' y3 - m,

gesprochen.

Steht die Kraft f senkrecht auf der Geschwindigkeit % des schnellen Objektes verschwindet der erste Summand auf
der rechten Seite von (7.3) und (7.5). Dann erhalten wir aus (7.5) die einfache Beziehung

f=y-my-d (1.7

Den Term y - my hat man deshalb friiher als 'transversale Masse' bezeichnet. In diesem Fall ist die Energiednderung %
null. Das ist zum Beispiel immer der Fall wenn nur die Lorentzkraft auf ein geladenes Teilchen wirkt.



A8 Fin spezielles Skalarprodukt fiir Vierervektoren

Die Stérke der Vierervektoren liegt darin, dass fiir sie ein spezielles Skalarprodukt existiert, welches einen Wert liefert,
der unabhéngig ist davon, in welchem Bezugssystem er berechnet worden ist. Das Skalarprodukt X o Y liefert also
immer einen invarianten Term. Es kann deshalb in jenem Bezugssystem berechnet werden, in welchem die Rechnung
besonders einfach ist!

Nun zur Definition. Es seien also X! und Y’ zwei Vierervektoren mit den Komponenten x, bis x5 sowie y, bis ys .
Dann definieren wir

X'oY' = Xo Yo =Xy Y1~ Xy Y2 — X3 Y3 (8.1)
Das Skalarprodukt ist offensichtlich kommutativ !
Wir betrachten anhand eines Viererortes und einer Vierergeschwindigkeit die Folgen dieser Definition.

Esseialso X! = (c-t, ¥) = (c-t,x,y,2)7T ein Viererort (das hochgestellte T bedeutet die Transponierung der
1x4-Matrix zu einer 4x 1-Matrix). Nach der Definition (8.1) gilt

XtoXt = (c-t)?—x?—y?2—2% = (c-1)? (8.2)
Das Ergebnis ist tatsdchlich unabhingig vom Bezugssystem, in welchem es berechnet worden ist.

Dasselbe stellen wir fest, wenn wir eine beliebige Vierergeschwindigkeit Ul = y - (c,u) =y - (c, Uy, Uy, U,)" nehmen
und das Skalarprodukt U! o U’ berechnen:

UloU' =y (c,=u) -y (c,u) =y*- (c?—u") =

2
uz (CZ —uz) = Czc__uz . (C2 —uz) = ¢? (8.3)
-

1
Das Ergebnis ist héngt offensichtlich auch nicht von der Wahl des Bezugssystems ab.

Im ndchsten Abschnitt fiihren wir zu jedem Vierervektor noch eine zugehorige Vierer-Linearform ein. Mithilfe dieser
Viererformen beweisen wir dann den entscheidenden

Satz: Das Skalarprodukt X oY zweier Vierervektoren ist unabhédngig davon, in welchem Bezugssystem (8.4)
es berechnet worden ist: X oY = X' oY’



A9 Vierer-Linearformen und das Skalarprodukt

Zu jedem Vierervektor X! = (xo, Xy, X, x3)T definieren wir eine zugehorige Viererform duch
Xi = (X0, —x1, =Xz, —X3) 9.1)

Eine Vierer-Linearform hat also die Gestalt einer Matrix mit einer Zeile und vier Spalten, ein Vierervektor ist eine
Matrix mit einer Spalte und vier Zeilen. Man beachte die jeweilige Position des Index i !

Mit diesen Viererformen kénnen wir das Skalarprodukt vom Abschnitt A8 als gewdhnliches Produkt von Matrizen
schreiben:

X0 Yo Yo
Xtoyt = 2 ° ;; = X0 Yo~ X1°Y1— X2 Y2~ X3 ¥3 = (Xo,—X1, Xz, —X3) - ;; = XY 9.2)
X3 Y3 Y3
Wegen der Symmetrie unseres Skalarproduktes gilt
X, Y= Xloyl = YioX! = Y- X! 9.3)

Zur Vorbereitung des Beweises der Invarianz unseres Skalarproduktes fiihren wir noch die Matrix G ein :

1 0 0 0
¢ = g _01 —01 8 (9.4)
0 0 0 -1
Einfache Rechnungen zeigen, dass die folgenden Gleichungen erfiillt sind:
G"=6=6"1', L'=G61LG , L=G6G1L"6G6 , X= (G-X)T =xX)-G 9.5)

Nun gilt fiir Vierervektoren nach (1.2) oder definitionsgemiss X!’ = L - X' . Wie transformieren sich die zugehérigen
Viererformen? Aus X* = L- X' erhalten wir mit (9.5)

X =X"DNT-¢6 =U-XD)"-6 = XHYT-LT-6G=X)'-L-G =
= XY G- ¢HL-G=[XDT-G]-[6*L-G] =X;-L?
Fiir Viererformen gilt also

Xi’ = Xi ‘L_l und Xi = Xi" L (96)

Damit sind wir gut vorbereitet fiir den Beweis der Invarianz unseres Skalarprodukts:
XVov? = X/ YV = (X;-L™Y)-(L-Y) = X;- (L' L)- Y = X;-Yi= XloY! 9.7)

Damit ist der Satz (8.4) bewiesen.



A10 Einige weitere ausgewéhlte Skalarprodukte von Vierervektoren

Im Abschnitt A8 haben wir U o U schon einmal berechnet. Nun beniitzen wir den Satz (8.4) und rechnen fiir eine
beliebige Vierergeschwindigkeit U = y - (¢, ) mit der Eigengeschwindigkeit U’ = 1 - (c, 6)

UoslU =U'oU =1-(c,—0)T-1-(c,0) = c? (10.1)

Die Rechnung wird ganz einfach, wenn man sie im Eigensystem des schnellen Teilchens durchfiihrt ! Vergleichen Sie
mit der Berechnung von U o U im Abschnitt AS .

Fiir den Impuls P = my - U gilt mit (10.1)

P°U=(m0'U)°U=m0‘(U°U)=m0‘C2=EO (102)
und

PoP =(my-U)o(mg-U) = my?-(UoU) = my?-c? (10.3)
Fiir die Viererbeschleunigung A = % (U) und die Vierergeschwindigkeit U gilt im Eigensystem %' = 0 und somit

U' = 1-(c,0).Nach (7.3)ist daher A’ =y2-(0,d") = 1-(0,d") . Damit erhalten wir allgemein
AolU = A'oU = (0,—d)T -(c,0) = 0 (10.4)
Damit gilt auch fiir die Viererkraft

KoU = (mg-A)oU = my-(AoU) =my-0 = 0 (10.5)

Fiir die Viererbeschleunigung A gilt nach (7.3)

A=vy*-c?2-u-a-(cu) + y%-(0,a)
Es ist also

A= y*.c?.U-d-c

At=y*- ¢ u-d-u, + y*-ay

A =y*-c*-u-d-u, + y*-a,

3 4.0-"2.90.9- 2

A y*-c u-a-u, + y°-a,
und daher

AoA= (492 — (A1)% — (42)2 — (43)? = ys_c—4_(ﬁ_a)2,[Cz_uxz_uyz_uzz] _
2:y%-c2 (@ d)  [uy-ap+uy,ca,+u,a] — vt et at+a?] =
=8t @-a@)? [2—u?] — 2y c2-@-a)?— yt-a? =
=},S.C—Z.(a.a)Z.CZC‘_Z“Z_2.y6.c—2.(a.5)2_y4.a2 -
=y6'c_2‘(ﬁ'a)2_2']/6'6'_2'(17'&)2_]/4'(12 =_y6‘c—2‘(a_a)2_y4_a2
Es gilt somit allgemein

A0A=_'}/6.C_2.(l_i.a)2_'}/4.a2 (10.6)



Im Eigensystem ist %' =0 und y =1, dortgiltalso A'0c A’ = —a'? = —a? . Die Eigenbeschleunigung wird also
mit dem Formelzeichen @ bezeichnet. Damit konnen wir (10.6) ergéinzen zu

AoA=—y6-c_2-(1_i-a)2—y4'a2=—0(2 (107)

Stehen % und @ senkrecht aufeinander (zum Beispiel bei der Lorentz-Kraft) gilt nach (10.7) fiir die sogenannte
Zentripetal-Eigenbeschleunigung

2
a =vy?-d und a=y2-a=y2-u7 (10.8)

Bei einer linearen Beschleunigung sind % und d parallel zueinander. Dann gilt nach (10.7)

a2 = y5-c2-(@-a)2+ yt-a? = yb-c2-ut-al+yt-a? =

c2

(

c2

u? c2-y? 4 2 c?
+ ) = rya ‘(cz—uz) -

Bei einer linearen Beschleunigung betrigt die Eigenbeschleunigung also
a=vy3-a (10.9)

Nur bei der linearen Beschleunigung gilt damit die Beziehung
f=v3my-d=my-@a (10.10)

Im Fall der Zentripetalbeschleunigung haben wir ndmlich nach (7.7)

7=y-m0-&=§-mo-a’ (10.11)



A1l Der Viererimpuls als Erhaltungsgrosse

Die Erhaltungssétze fiir die Gesamtenergie und den Gesamtimpuls konnen zusammengefasst werden zum Erhaltungssatz
fiir den Viererimpuls.

Die Erhaltung des Viererimpulses bedeutet
2P = h
i J

wo die Summen {iber alle beteiligten Teilchen vor und nach einem Vorgang lauft.
Nun ist ja
1 -
P = (- Ei,pi)
Dass die Summe der ersten Komponenten konstant bleibt bedeutet also nichts anderes als die Erhaltung der
relativistischen Gesamtenergie, und die Konstanz der Summe iiber die anderen drei Komponenten bedeutet die Erhaltung
des relativistischen 3d-Gesamtimpulses.
Im zweitenTeil dieser Arbeit, bei den Anwendungsbeispielen, startet man immer mit der Erhaltung des Viererimpulses
und versucht dann durch Bilden des Skalarprodukts mit anderen Vierervektoren Terme zu finden, die sich einfach
berechnen lassen:
P+ P, =P + P, = PioPy+ PyoPy = P3oP, + Pyo Py
oder
Py + P, =P + P, = (Py+ Py)o(Pr+ P) = (P + Py)o(Ps+ Py)

Die auftretenden Skalarprodukte berechnet man dann bei freier Wahl in jenem Bezugssystem, in welchem die Rechnung
am einfachsten ist.



B12 Eine theoretische Anwendung

Wir beweisen, dass in jedem Bezugssystem S fiir jedes Objekt gilt Err> = Eo> + p?-c? . (12.1)

P sei der Viererimpuls dieses Objektes im Bezugssystem S .Esist P = ( E;,:/c, P ) . Im Ruhesystem des Teilchens
hat es den Viererimpuls Py, = 1-mg - (c, 6) = (Ey/c, 6) .

e PoP= (Ey/c)? — p? nach der Definition des Skalarprodukts

o P0°P0= (EO/C)Z -0 dito

e Daraus folgtschon  E;;> — p%2-c? = ¢2-(PoP) = c?-(PyoP,) = E,° g.e.d.

B13 Der Viererimpuls von Photonen

Fiir Photonen reduziert sich (12.1) wegen my = 0 auf E,,,> = 0 + p?-c?.Es gilt somit fiir Lichtteilchen
Eiot =p-Cc = Eyn=F (13.1)
Esistalso p = E/c . Der Vierervektor eines Photons hat daher die Gestalt
P=(E/c,p) == (1,1) = (1,1) (13.2)
Bewegt sich das Lichtteilchen beispielsweise in die y-Richtung, dann hat der Einheitsvektor 1 die Gestalt 1= (0,1,0) .
Wir werden im folgenden oft beniitzen, dass fiir den Viererimpuls von Photonen immer gilt
pop=h—j-¥-(1—1)=o (13.3)

Es ist ja allgemein P o P = (Ey/c)? . Da Lichtteilchen keine Ruheenergie haben folgt auch daraus sofort (13.3).



B14 Was misst der schnelle Beobachter ?
Ein Objekt bewege sich im System S mit dem Viererimpuls P = ( E;,/c, B) = y -my - (c,¥) . Fiir einen im System
S ruhenden Beobachter A gilt dann

o L=y -mg-ct=c-P°=UyoP mit der 'Eigengeschwindigkeitt Uy = 1-(c,0)

e E,=c-VPoP daja PoP = my?-c?

* Exn= Bt~ Eo = UgoP — c-VPoP

e myg =+VPoP /c

Nun bewege sich ein Beobachter B mit der Geschwindigkeit U im System S . Welche Werte misst dieser Beobachter an
unserem Objekt ?

e E, und mg haben fiir B denselben Wert wie fiir den Beobachter A . Das sind ja Invarianten.
o Ei' =UyoP =UoP wo Uy = 1-(c,0) die Eigengeschwindigkeit von B in seinem System S' ist
o Eyn' = Ept' — Ey) = UoP —c-APoP

Alle Werte lassen sich sofort iiber unser Skalarprodukt berechnen.

Wie sieht es aus, wenn unser Objekt ein Photon ist ? Esist dann P = ( Epr/c, P) = h—cf - (1 ,T) wo 1 ein
beliebiger Einheitsvektor ist.

Fiir beide Beobachter gilt my; =0 und E, = 0 , und fiir beide gilt auch E = Ej;, = E;,; . Die Energie des
Photons hat aber nicht fiir beide denselben Wert:

FurAgllt E=U00P=1'(C;6)°¥'(1,T)=C‘P0=h'f
FirBgilt E = UoP = Uy 0P = 1-(0,6)0%-(1,T)=h-f’

Auch in diesem Fall lassen sich die Werte iiber das Skalarprodukt bestimmen.



B15 Paarvernichtung 1

Ein Elektron und ein Positron sollen frontal zusammenstossen. Wir betrachten die Kollision (und die anschliessende
Zerstrahlung der beiden) in diesem Abschnitt im Schwerpunktsystem. Es sei

A der Viererimpuls des Elektrons: A = y-mqy-(c,?)

Y'mO'(C!_"_j)

B der Viererimpuls des Positrons: B

C  der Viererimpuls des einen Photons: C = - (1 ,T)

D der Viererimpuls des anderen Photons: D = h—cf - (1, —T)

Der gesamte Dreier-Impuls ist vor der Kollision null, daher muss er auch nachher null sein. Es miissen also zwingend
zwei Quanten entstehen mit entgegengesetzten Flugrichtungen und gleichen Energien ! Damit haben wir schon die
rdumlichen Komponenten der Gleichung
A+B=C+D
ausgewertet. Die zeitliche Komponente ist identisch mit dem Energieerhaltungssatz:
2:y-my-c =2-h-f/c
also

h-f =y-mg-c?

Die Flugrichtung der beiden Quanten ist nicht bestimmt.



B16 Paarvernichtung 2

Nun soll ein schnelles Positron auf ein ruhendes Elektron stossen. Wir wissen aus dem letzten Abschnitt, dass bei der
Zerstrahlung zwei Quanten entstehen miissen, deren 3er-Impuls zusammen den 3-er-Impuls des einfallenden Positrons
ergeben. Wir berechnen die Energien oder die Frequenzen der beiden Quanten fiir den Fall, dass die Quanten auf der
Achse des einfallenden Positrons davonfliegen:

3 v=0
vorhes : O—» 5 )
hf, h-fz
nadal - e P T e

Die Rechnung fithren wir zuerst nicht im System S der Zeichnung durch. Wir betrachten den Vorgang aus einem System
T , welches sich mit w, der 'halben Geschwindigkeit' von v , bewegt ( siehe [1 - 3] ). Dann sind wir in der Situation des
vorangehenden Abschnittes B15 und konnen sofort schreiben

h'f'=]/w'mo‘02=mo'cz'(1_%)_%'(l+%)2 (16.)

Nun berechnen wir die entsprechenden Frequenzen im System S . Wir bendtigen dazu die Formel [1 - 1.4] fiir den
longitudinalen Dopplereffekt:

N R (o R (O R (O (R R
und (16.2)
1 1 1 1

Eine ganz mithsame Rechnung bestitigt, dass mit diesen beiden Termen tatsachlich der Energieerhaltungssatz erfiillt ist.
Mein Dank fiir die Durchfiihrung dieser Rechnung geht an Mathematica® ... Es gilt also

h-fi +h-f, =y, -mg-c? + mgy-c?

Die Losungen [2 - 29.44] zu dieser Paarvernichtung sehen viel komplizierter aus.



B17 Paarvernichtung 3

Wir sind in derselben Situation wie im Abschnitt B16. Nun sei aber gestattet, dass die Quanten im 'mittleren' System T in
eine beliebige Richtung davon fliegen:

Y

h-f'

Das urspriingliche System S bewegt sich mit w nach links gegeniiber dem gezeichneten System T . Der obere Quant
fliegt also dem Beobachter im System S entgegen und hat deshalb eine Frequenz f; , die grosser ist als ' und auch
grosser als die Frequenz f, des unteren Quants. Wir beniitzen die allgemeine Dopplerformel von [1 - 22.1] :

1

k= fT'Vw-(l—%-coqu)

Fiir f; haben wir f' aus dem letzten Abschnitt B16 einzusetzen. Die grossere Frequenz f; erhalten wir, wenn wir fiir
¢ den Winkel ' einsetzen; f, erhalten wir, wenn wir fiir ¢ den Winkel 180° — ' einsetzen:

hef =k f 1 5 1 mg - c2
! yw-(l—%-cos(a’)) v yw-(1—¥~cos(a’)) 1—%-005((1’)
) 1 5 1 mg - c?
h’fz =hf =Yy My Cc-

yw-(1—¥-005(180°—a’)) Y (1+%-cos(a’)) 1+%-cos((x’)
Im letzten Abschnitt haben wir den Spezialfall von a = 0° behandelt. Dann ist cos(a@) = 1 und wir erhalten die
Resultate des letzten Abschnittes.

Die Verwendung der 'halben Geschwindigkeit' w erleichtert nicht nur die Rechnungen, es entstehen auch schone oder
einfache Ergebnisse !

Im System S sind die beiden Winkel a@ und B nach der Aberrationsformel [1-22.3] kleiner als @’ respektive
180°—a':

c—w ar c—w 180°—ar
-tan — und tan £ _ - tan
2 2 c+w 2

a
tan - =
2 ct+w

Die beiden 3er-Impulse der Quanten miissen ja den 3er-Impuls des einfallenden Positrons ergeben.



B18 Paarvernichtung 4

Wir sind nochmals in derselben Situation von B16. Nun sei aber ein Detektor so montiert, dass er nur Quanten registriert,
die senkrecht zur Einfallsrichtung des Positrons wegfliegen:

hf
v ﬁ
ot i Emamamm=ma=a: s
X
bg.TCllI"r

Gesucht sind die beiden Energien der Quanten sowie der Winkel ¢ , unter dem der zweite Quant enteilt. Wir arbeiten mit
den folgenden Viererimpulsen:

e P=vy,-my(c,v,0,0) der Viererimpuls des einfallenden Positrons
e P,=my-(c,0,0,0) der Viererimpuls des ruhenden Elektrons
e P;= %-fl -(1,0,—-1,0) der Viererimpuls des Quants, der in den Detektor fliegt

|

e P = . “fo - (1,cos(p),sin(p),0) der Viererimpuls des anderen Quants

Die Erhaltung des Viererimpulses bedeutet P; + P, = P; + P, . Die ersten drei Komponenten liefern uns drei
Gleichungen fiir die drei Unbekannten f; , f, und ¢ :

h h
* YomorCtmyc =—-fi +--f
multipliziert mit ¢ erhalten wir (nicht liberraschend) E, + E, = E; +E, (18.1)

e y, my-v+ 0 = 0+%-f2-cos((p)

multipliziert mit ¢ erhalten wir diesmal E; 2= E, - cos(p) (18.2)
h h ;
e 0= —fo- (=1 + - fsin(p)
auch hier multiplizieren wir mit ¢ und erhalten E; = E, - sin(g) (18.3)

Wir eliminieren zuerst den Winkel ¢ indem wir die Quadrate von (18.2) und (18.3) addieren:

2 2
E? :—2 + E;? = E,%-(sin?(p) + cos?(p)) = E,* oder E)? — E2 = E2-Z (18.4)

c2

Nun multiplizieren wir (18.1) mit E, — E3 und erhalten

(B, + Ey) - (B, — E3) = (BEs + E)- (B, — E3) = E,* — B3 = E%- % (18.5)
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£2.0
Wir dividieren (18.5) durch (E; + E,) und erhalten E, — E; = El+;2 (18.6)
1 2
Aus (18.1) haben wir immer noch E, + E; = E, + E, (18.7)
527
Nun addieren wir (18.6) und (18.7) 2-E, = E, +E, + = H;Z (18.8)
1 2
2
Mit einer Nebenrechnung driicken wir auch Z—z durch die Energien E; und E, aus :
_vi_ 1 _ B’ v Ao, 1 _ _ELZ_E12—EZ2
1 2 =5 52 , also = = 1 == 1 5 = 2 (18.9)
Setzen wir (18.9) in (18.8) ein erhalten wir
E1? 512—522
2'E,=E,+E,+ — ——=E, +E, + E, —E, = 2-E (18.10)
E1+E; Eq
Es gilt somit, zusammen mit (18.7) E, = E; und E; = E, (18.11)
Fiir den Winkel ¢ berechnen wir
_ P _ Ymov _ ymev _ymev _ v _ [, B’
cos(p) = e = Eje = mje ymee — o = 1 5.2 (18.12)

Damit haben wir die gesuchten Grossen alle durch die Anfangsenergien ausgedriickt. Es ist offensichtlich, dass die
Losungen (18.11) und (18.12) den Gleichungen (18.1) bis (18.3) geniigen ! Wir notieren die Lésungen nochmals:

o h'f1=E3=E2=m0‘C2

e h-fy E4=E1=y,,-m0-c2

E,? 1
o cos(p) == = 1- 5 = /1—V—2

Aus den beiden Frequenzen (respektive Energien) der Quanten und dem Winkel ¢ kann man also die Energie (oder die
Geschwindigkeit) des einfallenden Positrons bestimmen - und umgekehrt.



B19 Paarerzeugung

Aus einem hochenergetischen Quant allein kann kein Elektron-Positron-Paar entstehen. Fiir das Paar der Teilchen
existiert ja ein Schwerpunktssystem, in welchem der 3er-Impuls null ist. Fiir das einfallenden Quantum gibt es sowas
nicht. Es muss also noch ein weiteres Teilchen (in der Regel ein Atomkern) beteiligt sein, damit diese Paarerzeugung
stattfinden kann. Das ist ein Gliick fiir die Astronomen: Die Quanten konnen in der Leere des Alls nicht einfach spontan
in ein Teilchenpaar zerfallen. Die meisten reisen daher unverdndert {iber 'astronomische’ Strecken.

Wir denken im Ruhesystem des beteiligten Atomkerns und verwenden die folgenden Bezeichner:

e P = h—cf -(1,1,0,0) furden Viererimpuls des einfallenden Quants

[ ]
o
I

(M-c,0,0,0) firden Viererimpuls des ruhenden weiteren Teilchens mit der Ruhemasse M

e P, firden Viererimpuls des Clusters bestehend aus den beiden neuen Teilchen und dem weiteren
beteiligten Teilchen nach der Paarerzeugung

Wir werden also nicht die Impulse der einzelnen Teilchen bestimmen, das ist ohne weitere Angaben gar nicht moglich.
Die Erhaltung des Viererimpulses bedeutet

P, + P, = P,
Wir quadrieren diese Gleichung:

PioP, +2-P,oP,+ P,oP, = P;oP, (19.1)
P; o P, istnull, P, o P, hatden Wert (M - c)? und bei P; o P, bleibt nur der zeitliche Anteil h - f - M iibrig.
Das Quadrat des Viererimpulses des Clusters berechnen wir in seinem Ruhesystem. Dort ist

Py= ((M+2-my)-c,0,0,0) und damit PyoPy; = Py'oP = (M+2-my)?-c?.
Eingesetzt in (19.1) erhalten wir
0+2-h-f M+ (M-c)>? =(M+2-my)?-c?
Ausmultipliziert
2-h-f-M+ M?-¢c® = M*-c* +4-M-my-c* + 4-my?-c?

und vereinfacht
hef =2-me-c? +2-me?-c?/M = 2-my-c?-(1+22) (19.2)

Man sieht auch am Ergebnis, dass ohne ein weiteres Teilchen, also fiir M = 0, der benétigte Energieaufwand unendlich
gross wire. Ist das weitere beteiligte Teilchen kein Atomkern, sondern auch nur ein Elektron, so muss die einfallende
Energie doppelt so gross sein wie die Ruheenergie der erzeugten Teilchen.



B20 Der vollkommen inelastische Stoss

Zwei Teilchen mit den Ruhemassen m, und m,; bewegen sich im Laborsystem S mit den Geschwindigkeiten

Uy = (ugy,0, 0) und 4, = (u,,0, 0)in der x-Richtung. Sie stossen vollkommen inelastisch zusammen, bilden
also nach der Kollision ein einziges Teilchen. Wie gross ist die Ruhemasse m, des entstandenen Teilchens, und mit
welcher Geschwindigkeit 1, = (u.,0, 0) bewegt sich dieses im Laborsystem ?

Die Erhaltung des Viererimpulses bedeutet P, + P, = P, . Wir quadrieren und erhalten
P,oP,+2-P,oPy+PyoP, = P.oP,
Die Quadrate berechnen wir natiirlich im jeweiligen Ruhesystem und erhalten
2 2

mg2-c? + 2y, mg-(c,ug,0,0)oy,-my-(c,up,0,0) +my2-c?2 = m2?-c

Wir dividieren durch c¢? und berechnen das Skalarprodukt:

(€% —ug - up)
ma2+2'Va'ma'Vb'mb'—C2a +my? = m?
Etwas umgestellt:
2 Ug - Up
m? = m, + m,?® + Z'ma'mb'<]/a-)’b' (1— acz )) (20.1)

Fiir den Vergleich mit
(m, +mb)2 = ma2 + my

untersuchen noch den Term
1 1
em e (1) = (1) T () ()

Haben u, und u; unterschiedliche Vorzeichen, stossen die beiden Teilchen also gegenldufig aufeinander, so sind alle
drei Faktoren grosser als 1, und m, ist entsprechend grosser als m, + m,, . Ist eine der beiden Geschwindigkeiten null
so verschwindet der dritte Faktor, einer der ersten beiden wird 1 und der restliche ist wieder grosser als 1 . Mit einigem
Aufwand kann man zeigen, dass k auch im letzten Fall, wo u, und u;,, dasselbe Vorzeichen haben, grosser ist als 1 .
Die Ruhemasse des entstandenen Teilchens ist also immer grosser als die Summe der Ruhemassen der Ausgangsteilchen,
es wird immer ein Teil der kinetischen Energie in Ruheenergie umgewandelt.

Wir berechnen noch die Geschwindigkeit 1, des entstandenen Teilchens. Der Energiesatz, also die zeitliche
Komponente der Erhaltung des Viererimpulses, liefert

Va'rna'c2 + Vb'rnb'c2 = yc'rnc'c2
Der Impulssatz, also die rdumliche Komponente der Erhaltung des Viererimpulses, liefert

Ya Mg Ug TVp My Up = Vo MU

Wir dividieren die Energiebilanz durch ¢? und erhalten einen Term fiir y, - m, , den wir in die Impulsgleichung
einsetzen:

_Ya Mg Ug + Vp My Uy

Ya Mg + Vp My

(20.2)

Uc

u. ist die Geschwindigkeit des Schwerpunktes des Systems vor und nach der Kollision.



B21 Der vollkommen elastische Stoss 1

Ein Teilchen der Ruhemasse m stdsst mit der Geschwindigkeit u = u, gegen ein ruhendes Teilchen der Masse M . Der
Stoss braucht nicht zentral zu sein :

vorher ;
- (,;f 1
u s
@+ i
m (e}
r/

nadiler: R_@ ;

Gegeben oder gemessen seien die Geschwindigkeit u des stossenden Teilchens, das Verhéltnis m/M der Ruhemassen
und der Winkel a , unter welchem sich das gestossene Teilchen von der x-Achse wegbewegt. Berechnet werden die
beiden Geschwindigkeiten nach dem Stoss sowie der Winkel £.

Wir starten mit dem Erhaltungssatz fiir den Viererimpuls: P + Q = R + S mit (21.1)
P=y,-m-(c,u0,0) das schnelle Teilchen vor dem Stoss

Q= M-(c00,0) das ruhende Teilchen vor dem Stoss

R=vy, M- (c,w-cos(a),w-sin(a),0) das gestossene Teilchen nach dem Stoss
S=vy.-m-(c,r-cos(a)r-sin(a)0) das stossende Teilchen nach dem Stoss

Wir quadrieren (21.1) und erhalten PoP +2-PoQ +QoQ =RoR + 2-RoS + SoS§ (21.2)

Wegen PoP =S50S und Q oQ =R oR folgtdaraus P o Q = R oS . Nun multiplizieren wir (21.1) mit R :

PoR +QoR = RoR + SoR=RoR +PoQ (21.3)
Damit ist S eliminiert und wir kdnnen die Geschwindigkeit w berechnen. Es ist
PoR=vy, v m-M-(c?—u-w-cos(a)), QcR=1y, -M?c?, RoR=M?c? und PoQ=y, -m-M-c?

Setzt man diese Terme in (21.3) ein so erhdlt man nach einigen Umformungen aus einer linearen Gleichung

2-(1+M-1)-u-cos(a)
w = m Vu (21.4)
M 1V°
(1+E-E) +u? - cos?(a)

1
Aus w und a erhalten wirdann vy, = (1-w?)"2 , w, =w-cos(a) und wy, =w -sin(a) (21.5)



Nun beniitzen wir die erste Zeile von (21.1), also den Energiesatz: y,-m-c +M-c = y,-M-c +y.-m-c

Nach y,- aufgelost :
M M 1
Yr =yu+a—a-yw und daraus r= 1—%”—2 (21.6)

Aus der Impulserhaltung, also der zweiten und der dritten Zeile von (21.1), erhalten wir noch die beiden Komponenten der
Geschwindigkeit 7 und den Winkel S :

M
Yu Mm-U =V, M-tV Mow, - rx=(yu'u_yw'g'wx>/yr

M
0=y, m- 1 +¥ M- w, - ry=(_yw'a'wy>/yr (21.7)

Da wir w,, positiv gewihlt haben ist der Wert von 1, immer negativ. Der Wert von 7, kann beide Vorzeichen annehmen.
[ bestimmen wir daher durch

B = sin~'(r/7) (21.8)

Zu diesen Rechnungen habe ich ein GeoGebra-Programm geschrieben. Dort konnen die Werte von u , M/m und a mit
Schiebereglern eingestellt werden. Das Programm zeigt dann die beiden Teilchen nach dem Stoss und gibt die Werte der
Geschwindigkeiten und der beiden Winkel an. Der Link zu diesem kleinen Programm ist
https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss 1.ggb




B22 Der vollkommen elastische Stoss 2

Wir sind in derselben Situation wie in B21, man beachte die dortige Zeichnung. Diesmal betrachten wir das Geschehen
aber im Schwerpunktsystem S' der beiden Teilchen :

vorles =

©— — @ |
m M

’

g
it

nadi L\kl’:

o

¥

v ist die Geschwindigkeit von S' gegeniiber S. Das in S ruhende Teilchen M bewegt sich in S' mit —v in der x-Richtung.
Der Gesamtimpuls ist in S' vor dem Stoss null und muss daher auch nach dem Stoss null sein. Die beiden Teilchen
bewegen sich also in entgegengesetzten Richtungen auseinander. Da auch die Gesamtenergie erhalten bleibt muss gelten

W =1]—-v|] und |r]|= || (22.1)
Die Relativgeschwindigkeit v von S' gegeniiber S berechnen wir mit der Formel [1 - 7.1] :

2 2
Dot €* purmoucc Yu

Ewor  Yu-m-c2+M-c?

= ~u
Yu+M/m

(22.2)

Damit ist auch y,, bekannt.
Fiir die Berechnung der Geschwindigkeiten nach dem Stoss brauchen wir nebst © und M /m noch den Winkel
@', unter welchem sich der stossende Korper nach dem Stoss von der positiven x-Achse entfernt. ¢ kann stumpf sein

falls m < M gilt.

Nach dem Additionstheorem fiir parallele Geschwindigkeiten ist

, . u—v

= 1+u-v/c? (223)

Wegen (22.1) gilt r=u , n' =u-cos(p’) und n' = —u'-sin(e) (22.4)
und w=v, w' = -v-cos(¢) und w,’ = v-sin(e’) (22.5)

Diese Geschwindigkeiten rechnen wir jetzt mithilfe der Formeln [1 - 22.1] und [1 - 22.2] um ins System S.



Es ist

r = Tx'-}—l,; R Ty' , und = rxz + 7,2 (22.6)
1+v-n'/c? Yooy +ver//c?) \ Y
und genauso
w, +v w,’
x Yy
W, = ——— | w, = - und w= |w.2+w,2 .
T arveowe YT A rvw/e) Jre (22.6)

Es bleiben noch die Winkel a und S zu berechnen, unter denen sich die beiden Korper in S von der x-Achse entfernen.
Dazu gibt es viele Mdglichkeiten, zum Beispiel so:

a = tan"'(w,/wy) = cos™'(w,/w) und B = cos ' (r/r) (22.7)

Auch zu dieser Variante der Berechnung eines vollkommen elastischen Stosses in der SRT habe ich zur Kontrolle ein
kleines GeoGebra-Programm geschrieben. u , M/m und ¢’ lassen sich mit Schiebereglern einstellen, und das Programm
zeigt dann die Geschwindigkeiten nach dem Stoss sowie die Winkel @ und 8 an. Falls m > M gilt kann der Winkel ¢’
nicht grosser sein als 90°.

Der Link zu diesem kleinen Programm ist https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss 2.ggb




B23 Die Compton-Streuformel

Wir betrachten den elastischen Stoss eines Photons gegen ein ruhendes freies Elektron:

vorher nadidrer
3
h-f
EEERNLS ST EEEr-) 4 -
e ‘ h“Fi

Vor dem Stoss haben wir die Viererimpulse P =ﬂ-(1,1,0,0) und Q =my-(c,0,0,0)

c

Nach dem Stoss haben wir R=ﬂ-(1,cos<p,sin<p,0) und Q' =1y, -my-(c,u)

c

Ausgangspunkt ist der Erhaltungssatz fiir den Viererimpuls: P+Q =R+ Q'
Er wird quadriert PoP +2-QoP +QoQ = RoR+2-Q"oR + Q'0Q’
somit 0+2QoP+QoQ=0+2-QeR+QoQ und QoP =QoR

Wir multiplizieren (23.1) mit P’ und beniitzen (23.2): PoR + QoR = RoR + Q'oR =0+ QoP

Q' ist eliminiert ! Wir berechnen die {ibriggebliebenen drei Skalarprodukte von (23.3) :

= MfoRf g N =L . EF.1-
e PoR = o (1—cos ) = 1T (1 —cos @) =5 E-E"-(1—cos )
hf! h 1
e QeR=mo-c-——=mg-c-5=75"mg-c*E
h-f h 1
° QOP =7’n0.c.T =m0.c.1= C_z.mO.CZ.E
Eingesetzt in (23.3) %-%-(1—cos<p) + mO-c-% = mo-c-%
S oA ,
und multipliziert mit - h-(1—=cosp) + my-c-A =my-c-A
und noch etwas umgestellt h-(1—cosp) = my-c-(A'=2)
Damit haben wir die Streuformel von Compton gefunden: AM=21= # (1 —=cos @)
o

LC ~ 2.426 Pikometer ist die sogenannte Compton-Wellenlinge des Elektrons.

mo-

(23.1)

(23.2)

(23.3)

(23.4)

Auf der folgenden Seite bestimmen wir noch die Energie E' = h - f' des gestreuten Photons aus der Energie E = h - f

des einfallenden Photons und dem Streuwinkel.



Wir schreiben (23.3) nochmals und verwenden diesmal die Energieterme fiir die Skalarprodukte:

C%-E-E’-(l—cos<p)+ Ciz-mo-cz-E’= Ciz-mo-cz-E (23.5)
Multipliziert mit ¢? und etwas umgestellt

E-(E-(1—cos@) + my-c?) = my-c?-E

und nach E' aufgelost

, my-c?-E E 1 (23.6)
= - _ . 2= ) '
E-(1—=cos¢p) + my-c 1 + E >+ (1 — cos @)
mo‘c
oder
2
me-c*-h-f 1
oo - . ‘ (23.7)
h-f-(1—cosp) + my-c 1+ h fz-(l—cosq))
mo'c
mo-c?

~ 1.236 - 10%° Hz miisste dann die Compton-Frequenz des Elektrons genannt werden.

(23.4) und (23.6) zeigen, dass die Energie des gestreuten Photons immer kleiner ist als die Energie des einfallenden
Photons, wie es ja nach dem Energiesatz sowieso sein sein muss. (23.6) zeigt noch

1
E' > E-
4 ZE
mo'c

Eine exakte Rechnung ohne Vierervektoren ist hier viel aufwendiger. Man vergleiche zum Beispiel mit
https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_03.pdf




B24 Der inverse Compton-Effekt

Ein Photon kann viel Energie gewinnen, wenn es frontal und elastisch gegen ein sehr schnelles Elektron stdsst:

vorke : wk/t? ‘1—~v—- (&)
h-f! v'
nadklus - S +«/ 0
Wir brauchen die folgenden Viererimpulse :
e P = h—;f-(l,—l,0,0) fur das Photon vor dem Stoss
e Q=vy,-my-(c,v,0,0) fir das Elektron vor dem Stoss
e R = h'Tf’-(l,l,O,O) fiir das Photon nach dem Stoss
o S=y,-my(c,v,0,0) fur das Elektron nach dem Stoss
Wir starten wieder mit der Erhaltung des Viererimpulses P+Q=R+S (24.1)
quadriert PoP + 2-PoQ +QoQ = RoR +2-RoS + S§0§
ausgewertet 04+ 2-PoQ +mg?2-c2 =0+ 2-RoS + my?-c?
also gilt PoQ = RoS (24.2)
Nun multiplizieren wir (24.1) mit R PoR + QoR = RoR + SoR =0+ PoQ
und erhalten PoR + QoR = Po(Q (24.3)

S ist eliminiert. Nun bestimmen wir die drei Skalarprodukte:

. ! . !
e PoR=".M 141 0-0)= 2.0
c c c c
fl
© QoR=ReQ="Ly, m(c—v)

c

h-f

c

° PoQ

VoMo (c+v)

2h_fh_f’ hf!
c

eingesetzt in (24.3) : — 1 T-y,,-mo-(c—v) = h—:-y,,-mo-(c+v)

2

durch y, - my chefohof+hf(1=2) =n-f-(14%) =~ 2-h-f (24.4)

Yymg-c?
Wir machen einen sehr kleinen Fehler, wenn wir fiir v = ¢ die Klammer (1 + E) durch die Zahl 2 ersetzen !

1

Dividiert durch 2 hef( hef +3-(1=2))=h-f

Yy mo-c?



h- 1
h‘f,= f =yv.m0.C2.

S SRS S SR 4 (C—v) o mg-c2
Yy c Mg * €2 h-f +3 (1 c) L+ 5 R-f
1
=Yy mg-c?-
14 =)y omg A
2-h

Fir v = ¢ gilt *) in sehr guter Ndherung ¥, - (c —v) = ¢/(2 : y,) . Damit vereinfacht sich (24.5) zu

1
E'=h-f' = y,-my c* —
1+

Nun schitzen wir den zweiten Summanden im Nenner ab fiir y,, = 10’000 . Fiir 2 setzen wir 500 nm ein :

c-my-A 3-108-9.1-10731-5-1077

~ ~ 0.517
4.y, h 8-105-6.6-10734

Dann ist also

E =~ #-10'000-m0-62 ~ 6592 -my - c? ~ 6'592-511keV ~ 3.37 MeV

Je grosser die Energie des stossenden Elektrons ist umso grosser ist der Anteil, der dem gestossenen Quant zugute

kommt. Auf diese Weise konnen Gammagquanten mit extrem hohen Energien erzeugt werden.

Vv E"/(mgy-c?)
10 0.019
100 5.27
1'000 162
10'000 6592
100'000 95'084
*)
v v
1-2 1-2
1 1 c c c—v
(c—v) = e ~ C =+c-
Yo (c—v) — Tt ( C) — NG Ve 5
c c c
Ve c—v
~ c—v
V2-.y, Ve—v
c
c—v~2_n2 und y,,-(c—v)zz'y

(24.5)

(24.6)



B25 Bremsstrahlung

Ein Elektron durchlduft in einer Vakuum-Rohre eine Beschleunigungsspannung von einigen zehn Kilovolt und prallt
dann auf ein Anodenmaterial auf. Dabei gibt es einen betrdchtlichen Teil seiner Energie als Rontgenquant ab. Vor dem
Aufprall haben wir ein schnelles Elektron und ein ruhendes Atom in der Anode. Nach dem Aufprall haben wir ein
angestossenes Atom samt Elektron (wir behandeln das als einen Cluster) sowie den Rontgenquant:

Die folgenden Vierervektoren gehen in die Rechnung ein:

& B e P=y, - my-(c,v,0,0) das Elektron vor dem Aufprall
l i ° Q=1-M-(c,0,0,0) das Atom vor dem Stoss
e R =y, M+my) (c,u,,u,,0) Atom und Elektron
nach dem Stoss
hf e S = h—j-(l,O,l,O) der Rontgenquant

Wir starten wieder mit der Erhaltung des Viererimpulses:

P+Q=R+S (25.1)
quadriert:

PoP +2-PoQ 4+ QoQ = RoR+ 2-RoS + SoS

Wir berechnen die 6 Skalarprodukte: PoP =my2-¢c? ; QoQ = M?-¢? ; RoR=(M+my)?-c? ; So5S=0 ;
PoQ=vy, mg-M-c?: RoS=y, - (M+mg)-"L-(c—uy) .

Somit mg%-c?2+2-y, - myg-M-c?+M?-c2=(M?+2-M-my+my?) -c2+2-yu-(M+m0)-¥-(c—uy)

vereinfacht 2-yy-my-M-c? = 2‘M'mO'Cz+2')/u'(M+mo)'h'f'( _u_cy)
: 5 uy
weiter y—1) my-M-c =Vu-(M+m0)-h-f-( _T)
und (Vv—l)-mo-cz-L A hf (25.2)

Yu(M+mg) c—uy

M 175000
=~ . Der Faktor

Fiir Molybdén als Anodenmaterial gilt zum Beispiel =
M+mg 175001 M+mg

ist daher nur wenig kleiner

als 1.
Es ist zudem auch u, <u < ¢, y, und der Faktor c/(c —u,) sind daher beide nur ganz wenig grosser als 1. Je
weniger Energie das Atom aufnimmt, desto ndher liegen diese beiden Faktoren bei 1. Als Obergrenze fiir die Energie des
Rontgenquants erhalten wir somit

hef < @—1)mg-c® = Egp (25.3)
Das hitten wir natiirlich auch gleich sagen konnen: Der Rontgenquant kriegt maximal die ganze kinetische Energie des
Elektrons ! Es gilt also

h:fnax = Exin = U-e

In der Kristallstrukturbestimmung arbeitet man mit Beschleunigungsspannungen von 20 bis 40 Kilovolt, was zu
Wellenldngen im Bereich von einem ganzen bis zu einem halben Angstrém fiihrt.



C26 Die Lorentzkraft als Vierervektor

Maxwells Theorie des Elektromagnetismus ist ja uneingeschriankt kompatibel mit der SRT. Daher darf man auch

erwarten, das das Kraftgesetz von Lorentz weiterhin gilt: f = q- (E + U X §) . Dieses Kraftgesetz ist ja eigentlich
eine Definition fiir die Feldvektoren des elektrischen und des magnetischen Feldes: Die gesamte Kraftwirkung auf ein
geladenes Teilchen setzt sich zusammen aus der Coulombkraft und der Lorentzkraft.

Fiir die entsprechende Viererkraft gilt damit

1 dE dp 1 2 - 2 - L = .
K=y (o2 =v (G fid, f)=yq(;Ed E+ixB) (26.1)

QR

Das Magnetfeld tragt nichts dazu bei, die Energie des geladenen Teilchens zu verdndern: Da % X B immer senkrecht
steht auf U gilt f uUu=q- (E + uxB) u=gq- E-u.

K kann als Produkt einer Matrix mit dem Vierervektor U geschrieben werden:

0 E E, E, c

K =g. E, 0 c-B, —c-B, - Uy (26.2)
c |E, —-c-B, 0 ¢ B, Uy
E, c¢-B, —c-By 0 Uz

Diese Matrix erhélt die Bezeichnung F (wie Faraday), sie beschreibt in der SRT das elektromagnetische Feld. Das
Kraftgesetz von Lorentz schreibt sich damit als

k=1
c

Y (26.3)

K und U sind Vierervektoren. In einem anderen Bezugssystem S' haben sie eine andere Gestalt. Diese ist nach der
Definition im Abschnitt A1 gegeben durch K' = L-K und U’ =L -U . Es ist nun nicht schwierig, die Matrix F' zu
bestimmen, fiir die gilt

K’ =2'F"U’
Cc

Multiplizieren wir (26.3) von links mit unserer Matrix L von (1.3) erhalten wir

L-K = z-L-F-U = E-L-F-L_l-L-U
c c
und somit
K=L-Kk=%wr1v.wuv=2pruy
c c
fiir die Matrix F’ mit F'=L-F-L7t. (26.4)

Beschreibt also die Matrix F das elektromagnetische Feld in einem Bezugssystem System S, dann beschreibt die Matrix
F'=L-F L1 dasselbe elektromagnetische Feld in einem Bezugssystem S', welches sich mit der Geschwindigkeit v
relativ zu S in der positiven x-Richtung bewegt. Wir werden die Transformation der einzelnen Komponenten von F im
ndchsten Abschnitt untersuchen.



C27 Die Transformation des elektromagnetischen Feldes

Entsprechend der Gleichung (26.4) brauchen wir zur Berechnung von F' nichts anderes zu tun als das Produkt L - F - L1
der Matrizen L und F zu berechnen. Fiir

0 E, E, E, y —y-B 0 0
P E, 0 c-B, —c-B) und L = —y-B % 0 0
E, —c-B, 0 c-B, 0 0 1 0
E, c¢-B, —c-By 0 0 0 01
erhdlt man nach braver Rechnung
0 Ex yv'(Ey_v'Bz) yv'(Ez+v'By)
% v
Ey 0 C'yv'(Bz_C_z'Ey) _C'VV'(By_C_Z'EZ)
F' = v
Vv'(Ey_v'Bz) _C'Vv'(Bz_C_z'Ey) 0 ¢ By
1%
yv'(Ez+v'By) C'Vv'(By_C_z'Ez) —c - By 0
Es gilt also
E, = E, B, = B,
’ , v
Ey, =yv'(Ey_v'Bz) By=YV'(By+C_2'Ez) (27.1)
' , v
E, ZYU'(EZ+V'By) Bzzyv'(Bz_ﬁ'Ey)

Fiir die Transformation in die andere Richtung ist v durch —v und somit L durch L™! zu ersetzen. In den
Beziehungen von (27.1) vertauschen dadurch in der zweiten und dritten Zeile die Pluszeichen und die Minuszeichen ihre
Platze.

Die SRT vereinigt also das elektrische und das magnetische Feld zu einem einzigen elektromagnetischen Feld. Damit
konnte Einstein die 'Asymmetrien' beheben, die er im ersten Satz seiner "Elektrodynamik bewegter Korper" von 1905
beklagt: "Dass die Elektrodynamik Maxwells - wie dieselbe gegenwirtig aufgefasst zu werden pflegt - zu Asymmetrien
fiihrt, welche den Phdnomenen nicht anzuhaften scheinen, ist bekannt."



C28 Kraft und Beschleunigung im Speicherring

Im Laborsystem S kreist ein Teilchen mit positiver Ladung g in
einem Speicherring. Das elektromagnetische Feld weist einzig
eine Komponente B, = —B auf. Die erforderliche Zentripetal-
kraft ist durch die Lorentzkraft gegeben:

f=q-(E+%xB)=q-(0,v-B,0)

Da die Kraft und die Beschleunigung senkrecht stehen auf ¥
gilt nach (7.7)

2 -
f=vw-my-a

dd i=(0,a,,0) mit a, =L 28.1

und daraus a=(0,a,,0) mit a, — ( )
2 RS

Mit a, = z ergibt sichnoch B = oo - P (28.2)
r qr q-r

Im CERN bei Genf kreisen Protonen mit einer Geschwindigkeit von bis zu 299'780'455 m/s in einem Kreis herum,
dessen Radius 4243 m betrigt (die Lichtgeschwindigkeit ¢ betrdgt 299'792'458 m/s) . Damit ist y,, = 111.75. Die
benoétigte Feldstirke B ist also etwa 112 mal so gross wie nach der nicht-relativistischen Rechnung ! Statt einigen
Milliteslas werden Feldstirken von bis zu 8.3 Tesla erzeugt, wozu supraleitende Magnete erforderlich sind.

Wir berechnen a,, im Laborsystem noch einmal, aber diesmal mit dem Formalismus der Vierervektoren. Es gilt mit (7.5)

0 0 0 0

9y, 00 0 B 0
K=oFU=r-Clo ccB 0 o
0 0 0 o0

und wir erhalten ebenfalls (28.1) .

c 0 0 0
v\ 4 o |\ 0 _ o | ax
0)=" N\ vcB|T\ppvqg-B|TT0 g
0 0 0 a

Nun betrachten wir die Situation im Eigensystem S' des geladenen Teilchens. Es hat dort die Eigengeschwindigkeit
U' = (¢, 1) = (c,0,0,0) und, nach (10.8), die Eigenbeschleunigung A’ = y,,2 - (0, a,, ay, a;) . Wir berechnen diese

Eigenbeschleunigung nochmals mit A"’ =L - A :

Yy —y-B 0 0 0 0 0 0
—y . 0 Ay Ay
pw=|"vB v 00 _ _ 2 =1 )
0 0 10 -a, vioay |~ g ay
0 0 0 1 0 0 a,’ a,’
Daraus erhalten wir A'=A  und a=y2-a= (0, y"::l—'vﬁ ,0) (28.3)
0

Mit K'=my-A'=my-A=K und(7.7) folgt

f,=m0'yu'a’=m0'1'&,=m0'yv2'C_i=Vv'f (28.4)

Wir rechnen das noch ein zweites Mal durch im Eigensystem S' des Teilchens, beniitzen aber diesmal die Trans-
formationsformeln fiir das elektromagnetische Feld. Nach (27.1) haben wir

E/) =E =0

1 , v
E,) =7y, - (E,—v-B)=y,-v-B By=]/,,-(By+C—2~EZ)=O

Ez, = Vv’(Ez+v'By)=0



Daraus f’=q-(§’ +UxB)=q-(E + 0xB)=q-(0,y,-v-B,0)=mg-y,-d' =mg-1-a

und somit wieder a = y’:nLB =vy,2-a (28.3) = (28.5)
0

Wegen fl=mp-d =mg V2 3= vy (y Mo Q) =7, f giltalso bei einer Zentripetalkraft im Eigensystem
des Teilchens

und  fl=y,-f (28.6)

Qu

a =YV
Das kdnnen wir noch begriinden:
,_ d , d d dt d
fy = E(py) = E(py) = a(py) " =Y 'E(py) =W 'fy

Und, ganz dhnlich:
' da (dyl) d (dy dt) d ( dy) da (dy) d (dy) dt 2 d (dy) 2
a _ )= —]) = —  —_) = o —_— =] = —_ =) — = —_— =) = -a
y dr \ dt dr \dt dt Vv g Yo e \ae Vog\ae) o =" " \a Vv y

¥, ist ja, wenn die Kraft senkrecht steht auf der Geschwindigkeit, ein konstanter Faktor und kann deshalb bei der
Differentiation ausgeklammert werden. Auch die Gleichung p,' = p,, lsst sich nicht auf die x-Richtung iibertragen.
Das gilt also alles nur fiir Krifte, die senkrecht stehen auf der Bewegungsrichtung.

Den anderen Spezialfall, wo f und ¥ parallel sind, behandeln wir im niichsten Abschnitt.



C29 Kraft und Beschleunigung beim Linearbeschleuniger

Ein Teilchen der Ruhemasse m, und der Ladung g werde lidngs der x-Richtung im Laborsystem S durch ein konstantes
elektrisches Feld E = E, beschleunigt. Das angelegte magnetische Feld sei null.

Es ist nach (7.6)

somit
3
q-E;, v2\"2 dv
= = 1 — — . —
my % ( c? dt
und
) _3
q- EX v 2
dt = ([1—- =) -d
e (i) oo

Wir integrieren beidseits ( Bronstein-Integral Nr. 178 ) und erhalten

Q'Ex

my

v2\ 2
t+C = v-(l—c—2> (29.2)

Die Konstante C ist null falls die Anfangsgeschwindigkeit null ist. Losen wir fiir diesen Fall (29.2) nach v auf erhalten
wir

Q'Ex,t
my

Am Anfang nimmt die Geschwindigkeit wie in der klassischen Physik linear zu. Der Nenner drosselt die Zunahme aber
immer mehr, und fiir t = oo erreicht die Geschwindigkeit den Grenzwert ¢ . Um das zu zeigen erweitern wir (29.3) mit
mitc/t:

v(t) = (29.3)

.Q'Ex C‘q'Ex
. m m
lim 0 = 0 _=¢ (29.4)

o c2  (q-En° q-En\?
=+ (5) (%)

Und wie sieht der Vorgang im Eigensystem S' des beschleunigten Teilchens aus ? In jedem Moment gilt dort
E/=E ,E'=0,E'"=0,B'=B,=0, B/ =0 und B, =0.Wirhaben also in jedem Moment
dieselbe Situation wie im Laborsystem S , die Gleichungen (29.1) und (29.2) gelten auch in S' . Wir konnen diese
Gleichungen dort aber nicht auswerten, da S' ja gar kein Inertialsystem ist !

Wir studieren die Situation nochmals im Laborsystem S unter Verwendung von Vierervektoren.

Esist E= (E.,0,0),B=0 und % = #(t) = (v(t),0,0).Diedrei Vektoren f, & und @ sind parallel.
Weiterist f= q- (E + U x §) =q-(E,0,0) und f-B=q-v-E, .Damitkdnnen wir mit (7.5) die
Gleichung fiir die Viererkraft aufstellen:



1
1 -, 1 t. iy,
cF\ [rsavs S
K = y- ;x = yqo Ex =m0.A=m0. }/4'§'U2'ax+]/2'ax (295)
y
0
3 0 .

(29.5) liefert uns zwei Gleichungen, eine fiir die zeitliche Komponente und eine fiir die erste riumliche Komponente.
Die Gleichung fiir die zeitliche Komponente lautet gekiirzt

q-Ex = mO'VS' Ay
und wir sind wieder bei (29.1) und (7.6). Die Gleichung fiir die x-Komponente liefert gekiirzt

2
— — 3 1 2 — 3 v -2
fr = q- Ex = mg-y 'C_Z'V Ay Ty Ay = Mo Y7 Ay C_2+y

2
Die linken Seiten der beiden Gleichungen sind identisch, der Faktor (z—z + y‘z) muss demnach 1 sein :

v? v? v?
-2 _ _ —
1Y -?+(1 —cz>-1

Wir erhalten also zweimal dieselbe Gleichung fiir die Beschleunigung a,, .



C30 Der stromfithrende Leiter 1

In einem langen, geraden, zylindrischen Draht soll ein Strom [ fliessen. Der Draht ruhe im Laborsystem S, sein
Querschnitt habe den Radius r und die mittlere Driftgeschwindigkeit der Elektronen sei v . Ist n die Zahl der
Leitungselektronen pro Volumeneinheit, so gilt fiir die Stromstérke im Draht

I=n-er?mv (30.1)

Im Aussern des Drahtes wirkt auf eine ruhende Probeladung keine elektrische Kraft, es gibt kein elektrisches Feld.
Der stromfiihrende Leiter ist aber von ringformigen Feldlinien eines Magnetfeldes umgeben :

.4
|
= 4
ftE T |
I 1
b4
e 'y 4,,,4»+
d’ ¥ d
| 4 - !
I 5
e v
O— 3

Der Strom fliesst von rechts nach links, die Elektronen driften also mit v von links nach rechts. Die Symmetrie des
Magnetfeldes entspricht der Symmetrie des stromdurchflossenen Leiters.

Das Gesetz von Ampére liefert fiir die magnetische Feldstirke im Abstand d von der Drahtmitte den Term
By=@-i=@-%-n-e-r2-rt-v (30.2)

Damit gilt fiir das geladene Teilchen im Abstand d von der Drahtmitte, welches sich ebenfalls mit der Drift-
geschwindigkeit v der Elektronen in der x-Richtung bewegt

f=4q @BxB)=f = q-ve-B, = q-v-;—i-%-n-e-rz-n-v = ?-%-q-n-e-rz-vz (30.3)
Nun wechseln wir ins Eigensystem S' des geladenen Teilchens. Im System S' hat das Teilchen die Geschwindigkeit null,
ein eventuell vorhandenens Magnetfeld kann daher keine Kraftwirkung ausiiben. Wenn das Teilchen in die z-Richtung
vom Draht weggetrieben wird muss der Draht einen positiven Ladungsiiberschuss aufweisen und damit ein elektrisches
Feld erzeugen. Dem ist tatsidchlich so, den Grund dafiir finden wir in der Lorentz-Kontraktion. Das Erstaunliche dabei ist,
dass diese sich schon bei den Driftgeschwindigkeiten in der Grossenordnung von 1 Millimeter pro Sekunde bemerkbar
macht !

Wenn der Draht im System S kein elektrisches Feld besitzt und insgesamt ungeladen ist, dann haben die driftenden

Elektronen dieselbe Ladungsdichte wie die ruhenden Gitteratome: p, + p_ = n-e +n-(—e) = 0.Im System S'
ist der Abstand der Elektronen nicht mehr lorentzverkiirzt, dafiir aber derjenige der Gitteratome. Deshalb gilt dort

I ’ ’ 1 1
p = ps + p- =n-e-n+n-(—e)-;=n-e-(n—;) =n-e-y- B (30.4)

Dieser positive Ladungsiiberschuss pro Volumeneinheit erzeugt das elektrische Feld und damit die Kraft, welche auf
unser geladenes Teilchen wirkt.



Die Stirke des elektrischen Feldes im Abstand d = d’ von der Drahtachse berechnet man mit dem Satz von Gauss:

= — 1
ng’-dA’ = —-fp’-dV’
€o

Die Integration erfolgt links iiber die Oberfliche eines beliebig gewéhlten geschlossenen Raumgebietes, rechts iiber das
Volumen von diesem Raumgebiet. Wir wéhlen dafiir einen zum Draht koaxialen Zylinder mit dem Radius d und der
beliebigen Linge Al' :

Aus Symmetriegriinden kann das E-Feld nur radial vom Draht weg zeigen, die Ladungsdichte zeichnet ja ( im Gegensatz
zum Strom im System S ) die positive x-Richtung nicht mehr aus. Die beiden Kreisflachen konnen daher nichts beitragen
zum linken Integral, weil dort der Flichenvektor senkrecht steht auf dem Feldvektor. Auf dem umlaufenden

Zylindermantel steht E' iiberall senkrecht und hat auch iiberall denselben Betrag. Das linke Integral ergibt somit
fﬁ’-dﬁ =E-2-m-d-Al

Beim rechten Integral trigt nur das Gebiet im Drahtinnern etwas bei, weil die Ladungsdichte ausserhalb null ist. Die
Ladungsdichte im Innern ist durch (30.4) gegeben. Somit gilt

1 7 ! 1 ’ 2 I 1 2 I 2
€o €o €o
Wir haben also E'-2-m-d-Al' = Si-rz-n-Al’-n-e-y,,-[)’,,z
0
und vereinfacht E' = %-irz-n-e'n'ﬂvz (30.5)
o 2

Im System S' wirkt damit auf unser geladenes Teilchen im Abstand d von der Drahtachse die Coulomb-Kraft

f’: q-E’:ﬁ’:q-E’:q-l l'rz.n.e.yv.ﬂvz

e 2d
Mit ¢2 = 1/(gy - tto) und B,> = v2/c? lisst sich das noch vereinfachen zu
f’:q.E’:q.uo.ﬁ‘rz.n.e.'}/‘u.vz (30.6)

Ein Vergleich mit (30.3) zeigt dass gilt f' = y, - f . Der Grund fiir das Auftauchen des Faktors y,, ist derselbe wie bei
(28.6).

Die Darstellung in diesem Abschnitt folgt iber weite Strecken derjenigen in [2 - 5].



C31 Der stromfithrende Leiter 2

Wir betrachten dieselbe Situation wie im vorangehenden Abschnitt. Eine positive Probeladung q bewegt sich parallel zu
einem stromfiihrenden langen geraden Draht mit derselben Geschwindigkeit, mit der sich die Leitungselektronen im
Draht bewegen. Man beachte dazu die erste Zeichnung in C30 .

Im letzten Abschnitt haben wir festgestellt, dass im Laborsystem S des ruhenden Drahtes eine Lorentzkraft auf das
Teilchen wirkt. Nach (30.3) gilt

G1.1)

QU ~

2 Ho
f:fzzquyzqvﬁ

Wir berechnen nun noch einmal, welche Kraft f " im Eigensystem S' der Probeladung auf diese wirkt, diesmal aber unter
Verwendung der Transformationsgleichungen fiir das elektromagnetische Feld.

Im System S gilt E=0 und, am Ort des Teilchens, B= B, = :—?T -é . Daraus erhalten wir mit (27.1)
E,/=E =0 B, =B,=0
’ , v
Eyy=v, - (Ey—v-B,)=0 By=yv'(By+C_2'Ez)=yv'By
' , v
E,) =v-(E,+v-B)=v, v B, BZ=]/U~(BZ—C—2'Ey)=0

Damit bestimmt sich die wirkende Kraft durch
freq (B +axB)=q-(F +0xB)=q-E =y,-q-v-B,

Fiir diese Coulombkraft gilt somit
f’=fz’=yv'q'v'By=yv'f (31.2)

Praktisch miihelos konnten wir das Ergebnis des letzten Abschnitts verifizieren.

und f=gq-v- :—?T L Dabeiist I die Stromstérke, welche in S gemessen

Es ist also f’=yv-q-v.;_jr.é !

wird.

Welche Stromstéirke wird eigentlich im System S' gemessen ? Die Stromstérke ist definiert als Ladungsmenge, welche
pro Zeiteinheit durch eine gedachte Querschnittflache fliesst. Die Umrechnung ist fiir die Richtungen senkrecht zur
Relativgeschwindigkeit v einfach:

! r r ! r ! 1
I,'=dQ'/dt'=p"-A"-u,’ = Vv'p'ﬁ'A'Vv'uy =VepAu, =yl (31.3)

Dabei ist u,, die Driftgeschwindigkeit der Elektronen in der y-Richtung. Die Transformation dieser Driftgeschwindigkeit
ist fiir die x-Richtung im Allgemeinen kompliziert. Bei uns istin S' die Driftgeschwindigkeit u," der Ladungstrager
gerade —v und wir haben nach (30.4) und (30.1) in diesem Spezialfall ebenfalls

L'=p"-A"u' =p"- A" (-v) =Vv'n'e'yv'ﬂv2'A'(_v) =Y (=p)-A-(=v) =y, Iy (31.4)

Damit gilt in unserer speziellen Situation

I’
f'=q-l7-i— und f=q-v-ﬂ—0-
2- 2.7

T mit d'=d, I'=y,-1 und B)’=y,-B, (31.5)

QU ~



C32 Der stromfithrende Leiter 3

Wir sind wieder in der Situation von C30. Diesmal soll die wirkende Kraft in S' mithilfe des Viererstroms J bestimmt
werden.

Da der stromfiihrende Draht insgesamt ungeladen ist, also kein E-Feld zeigt im Ausseren, ist die Ladungsdichte der
driftenden Leitungselektronen betragsmissig gleich gross wie diejenige der Atome im Gitter, welche diese
Leitungselektronen abgegeben haben. Wir nennen diese Ladungsdichten p und —p . Der gesamte Viererstrom J im
Sytem S des ruhenden Drahtes setzt sich zusammen aus dem Viererstrom J_ der Leitungselektronen und dem
Viererstrom J, der Gitteratome:

c c 0 Ptot * €
B _ o Nl v _ Jx
Jtor = J++ J- p 0 + (—=p) 0 0 Jy
0 0 0 Jz

Die Driftgeschwindigkeit der Elektronen soll ja gleich sein wie die Relativgeschwindigkeit von S' gegeniiber S.
Zu ], gehort die Stromstérke

I=Ix=jx'Ax=_p‘U'T'2'T[ (32.1)
Es gilt

u .
=po+ - 1- = Po+ " Yu- = po+ - Uy mit  Jyof, = poFoc?

oo o0
(=R}
<
<

und

J-=—p- = Po- Vv = Po- Yy =—po--U_  mit J_oJ = p,_?-c?

SO < 0
SO < 0
‘<§

Po+ und p,_ sind die Ladungsdichten der positiven und der negativen Ladungstridger gemessen in ihrem Eigensystem.

Wir bestimmennun J', J," und J_' im System S', indem wir die Viererstrome in S von links mit der Lorentz-Matrix L
multiplizieren. Wir erhalten

Y -y-f 0 0 c c
Py = -y B y 0 0}, |0 _ . —v
I+ I+ 0 0 10l 7o Pyl
0 0 0 1 0 0
y -y-B 0 0 c c—p-v c—fB-v
N e A y 0 o). —~N. | Vv |2 _,. —B-ctv|_ _ . 0
J- J- 0 0 1 o (=p) 0 p-y 0 Py 0
0 0 0 1 0 0 0
und
c c—p-v B-v P tot
ro_ ! I . —v _ . . 0 — . . -v = jx,
' =Ji+]- =py 0 Py 0 Py 0 X
0 0 0 i,

Die Stromdichte der in S driftenden Elektronen ist in S' erwartungsgeméss null geworden, wéhrend die Gitteratome ohne
ihre Leitungselektronen einen elektrischen Strom in die negative x-Richtung bilden. Dieser Strom hat die Stirke

I'=1L' =j/' A’ = py-(-v)r>m=y-I (322)



Dieser Strom I’ erzeugt im Abstand d' = d nach dem Gesetz von Ampére die magnetische Feldstirke

=y-B, (32.3)
Dieses Magnetfeld iibt aber keine Kraft aus auf unser geladenes Teilchen, da es ja in S' ruht.
Die gesamte Ladungsdichte des Drahtes ist jetzt nicht mehr null, sondern

Plot = p-v-B-v-==p-y-p? (32.4)

Diese Ladungsdichte erzeugt nach dem Satz von Gauss im Abstand d' = d eine elektrische Feldstirke E’, fiir die nach
C30 gilt

1
E-2-w-d-Al' = E—-pgot-rz-n-Al’
0

Also
a1 11 1 e 11,1
T 2-meg d Proe *T n_Z-n-so d’ pryprortom = 2-mgy d g v -
1 1 172 1 MO.SO 1 ﬂo 1’
=_-_—- . .Z.prp=_-2>% - L, r== . .y =B'-v=1v-B, - 32.5
2-mrgg d 2 v 2-mogy d v 2 d "’ y VEVEyv (32.5)

Fiir die Coulombkraft auf das geladene Teilchen in S' erhalten wir wie in (31.2)

ff=f=a-E'=q-v-qvB =y f (32.6)

Den Viererstrom | = (0,—p - v,0,0)T hitten wir gleich hinschreiben kénnen. L hitte daraus sofort den Viererstrom
J' und damit die Stromstérke und die Ladungsdichte im System S' geliefert:

y _-yﬁ 0 0 0 pvyﬁ C':.D’,t‘ot C(,D)/ﬁz)
J=1g="1YFE v 00 BGAR I R A A I B I e

0 0 10 0 0 Jy' 0

0 0 0 1 0 0 i 0

Daraus kann man wie gezeigt das B'-Feld und das E'-Feld des Leiters im System S' berechnen. Alle Resultate stimmen
komplett iiberein mit denjenigen, die wir auf anderen Wegen in den Abschnitten C28 und C29 gefunden haben.

Wir haben einen gewissen Aufwand getrieben um zu zeigen, dass der Viererstrom im allgemeinen nicht in der Form

J = po - U geschrieben werden kann. Nur in dieser speziellen Form ist offensichtlich, dass | ein Vierervektor ist. Die
gesamte Ladungsdichte ist aber oft verschieden von der Dichte der strémenden Ladungen, und dann ist diese Schreib-
weise nicht moglich. In unserem Beispiel liess sich der Viererstrom | immerhin aus zwei derartigen speziellen
Viererstromen zusammensetzen. Und nach A2 ist die Summe zweier Vierervektoren wieder ein Vierervektor.



C33 Die Leiterschlaufe im Magnetfeld

Im Laborsystem S wird ein Metallstab in der x-Richtung mit der konstanten Geschwindigkeit v bewegt. Der Metallstab
ist in gutem leitenden Kontakt mit einem U-formigen Metallbiigel. Die ganze eingeschlossene Fldche wird von einem
vertikalen Magnetfeld durchdrungen :

th
‘ Xy
% 2 | /
[ <= | A
fr 17
) n i AREREE
B Y X
&
Im Laborsystem wirkt auf die Elektronen im gleitenden Stab die Lorentz-Kraft
f=f=-e(-v-B) =e-v-B, (33.1)

Im geschlossenen Stromkreis fliesst daher ein Strom [ . Die Stédrke dieses induzierten Stromes ldsst sich iiber das
Induktionsgesetz berechnen. Fiir den Betrag der induzierten Spannung gilt

do dA
Una =[] - B

Die induzierte Stromstérke ist entsprechend
| =Upg/R = B-l-v/R
wo R der Ohm'sche Widerstand des Stromkreises ist.
Im Eigensystem S' des bewegten Stabes ist die mittlere Geschwindigkeit der Elektronen null. Ein Magnetfeld kann somit

auf diese Elektronen keine Kraft ausiiben. Allerdings liefert die Transformation des elektromagnetischen Feldes im
System S' ein ein elektrisches Feld, welches in die y-Richtung zeigt:

E/=E =0 ,E =v,-(E,-v-B,)=-y,-v-B, , E'=v,-(E,+v-B,) =0

Auf die Elektronen im Metallstab wirkt somit eine Coulombkraft vom Betrag

-

fr=f = (e (1) v B, =v,-e v B=vy,f (332)

Wie in den vorangegangenen Abschnitten gilt fr = Yo £ . Nach C29 istin S' auch der induzierte Strom in der
gegang

y-Richtung um den Faktor y, grosser:
I' =y,-1 (33.3)

Ist auch die Induktionsspannung um diesen Faktor grosser ? Die Antwort ist 'ja' :

, do’ , dA’ dA/y, dt dA/y, dA
|Uind|=F=Bz'E=yv'Bz' dt E=YV'B' dt 'yv=yv'B'E=Y1;'|Uind|
Fiir den Ohm'sche Widerstand gilt demnach R’ = R :
R = |Uind,| _ Vv'lUindl _ |Uind| - R

I Yol I



C34 Die erste Invariante des elektromagnetischen Feldes

Bewegt sich das Bezugssystem S' mit konstanter Geschwindigkeit v in der x-Richtung des Bezugssystems S dann gilt
fiir die Beschreibungen des elektromagnetischen Feldes in den beiden Bezugssystemen immer

—

E-BE=E"B (34.1)

Das Skalarprodukt E - B ist also eine relativistische Invariante. Wenn die Feldvektoren E und B in einem System S
senkrecht stehen aufeinander dann tun sie das auch in jedem anderen Inertialsystem S'.

Der Beweis von (34.1) lésst sich leicht direkt fithren iiber die Transformationsgleichungen (27.1), siehe dazu [2 - 34.20].
Wir machen es etwas komplizierter und fithren eine Matrix M ein, welche uns auch spéter noch von Nutzen sein wird:

0 c-By ¢-B, ¢ B,

c-B, 0 —-E, E,
M=, B, E, S (34.2)
c-B, —E, E 0

M gibt eine 'duale' Beschreibung des elektromagnetischen Feldes und ist mit unserer Matrix F eng verkniipft. Eine
einfache Matrizenmultiplikation zeigt, dass gilt

= ¢-E-B-1d, (34.3)

SO O R
[N -]
[l e ]
= O oo

Die Spur , also die Summe der Diagonalelemente von M - F, ist somit 4 - c - E-B.

Wenn F das elektromagnetische Feld im System S beschreibt dann beschreibt nach (24.4) F' = L - F - L™ dasselbe
elektromagnetische Feld im System S'. Man kann sich durch Nachrechnen davon iiberzeugen, dass auch fiir die Matrix
M gilt M'=L-M-L™! . Bsistalso

F=L-F-L'" ud M =L-M-L" (34.4)
Damit gilt
4-c-E-B = spur(M-F) = spur(L-M-L*-L-F-L™Y) = spur(M'-F") = 4-c-E'-B'

womit (34.1) bewiesen ist.

Fiir die Determinanten der Matrizen F, F', M und M’ gilt iibrigens noch

- —o\2

det(F) = det(F") = det(M) = det(M') = —c?- (E - B) (34.5)

Wenn ein Feld in ein reines B'-Feld transformiert werden kann gilt wegen E’' = 0 auch E'-B' = 0. Das ist nach

(34.1) nur moéglich, wenn auch E-B=0 gilt. Dasselbe gilt natiirlich auch, wenn ein Feld in ein reines E'-Feld
transformiert werden kann.



C35 Die zweite Invariante des elektromagnetischen Feldes

Bewegt sich das Bezugssystem S' mit konstanter Geschwindigkeit v in der x-Richtung des Bezugssystems S dann gilt
fiir die Beschreibungen des elektromagnetischen Feldes in den beiden Bezugssystemen immer

E?—c?-B? = E'?—¢%-B"? (35.1)
Dabeiist E2=E-E und B2=EB-B das konventionelle Skalarprodukt der 3d-Feldvektoren.
Fiir den Beweis von (35.1) betrachten wir die Determinanten von F + M und F — M . Die Rechnung zeigt, dass gilt
det(F+ M) =det(F — M) = —(E? — c?-B?)? (35.2)
Sowieso gilt fiir 4x4-Matrizen det(F — M) = det(M — F) . Es gilt also sogar
det(F + M) = det(F — M) = det(M — F) = det(—M — F) = —(E? — ¢? - B?)? (35.3)
Entsprechendes gilt im System S':
det(F'+ M") =det(F' —M") = det(M' — F') = det(—-M' — F') = —(E'? —¢?-B'%)? (35.4)

Nun gilt aber
det(F + M) = det(L - (F + M) - L) =det((L-F+L-M)-L—1)=

= det((L-F-L"+L-M-L1)) = det(F' + M")

Damit ist erst bewiesen, dass gilt (E? — c¢? - B2)? = (E'? — ¢? - B'2)?2 . Nach (25.1) hiingen die Werte von E2 und
B? aber stetig von der Relativgeschwindigkeit v ab. Ist der Wert von E2 — ¢? - B2 zum Beispiel positiv, dann bleibt er
bei variierendem Wert von v immer positiv, er kann nicht plétzlich auf —(E? — ¢? - B2) umspringen. Daher ist nicht
nur das Quadrat von E2 — ¢? - B2 invariant, sondern schon E2 — ¢2 - B2 selber. Damit ist (35.1) bewiesen.

Natiirlich kann man (35.1) auch beweisen, indem man in E'? — ¢? - B'? die entsprechenden Terme gemiss (27.1)
einsetzt und zeigt, dass man schliesslich E2 — ¢2 - B2 erhilt. Diese Rechnung wird in [2 - 34.21] vorgefiihrt.

Aus (35.1) kann man noch den Schluss ziehen, dass man ein reines E-Feld nie in ein reines B'-Feld umwandeln kann.
Dann wiirde ja nach (35.1) gelten E? = —c? - B'?, was nur bei verschwindendem E- und B'-Feld méglich ist.

(35.1) zeigt noch, dass ein Feld nur dann in ein reines B'-Feld transformiert werden kann, wenn E? —c¢?-B% < 0
gilt. Entsprechend kann ein Feld nur dann in ein reines E'-Feld transformiert werden, falls E2 —c2-B2 = 0.

In beiden Fillen muss nach dem letzten Abschnitt die zusitzliche Bedingung E-B =0 erfillt sein.

Die notwendigen und hinreichenden Bedingungen dafiir studieren wir im nichsten Abschnitt.



C36 Welche Felder lassen sich ganz wegtransformieren ?

Die Antwort kommt direkt aus den Gleichungen (27.1). Diese Gleichungen liefern die notwendigen und hinreichenden
Bedingungen dafiir, dass die entsprechende Transformation moglich ist. Die notwendigen Bedingungen, die wir in den
letzten beiden Abschnitten gefunden haben, sind dann automatisch erfiillt.

Es soll also im System S' nur noch ein B'-Feld geben, es soll also E'=0 gelten. Aus (27.1) folgt dann

E,=0 , E,—v-B,=0 und E,+v-B, =0
also
E,=0 , E,=v-B, und E,= —-v-B, (36.1)

Das ist die notwendige und hinreichende Bedingung dafiir, das sich das E-Feld wegtransformieren lésst.
Damit ist die notwendige Bedingung von C34, nimlich E-B=0 , bereits erfiillt:

E-B=E, B,+E,-B,+E,-B,= 0-B,+v-B, B, +(~v-B,)-B, =v-B,-B,—v-B, B, =0
Auch die Voraussetzung aus C35 ist damit bereits erfiillt:

E*—c*-B*=0+v?-B,+v*-B,* - ¢?- (B, + B, +B,") = —=c* B, + w* = ¢?) - (B," +B,") < 0

Ebenso einfach ist die Antwort auf die Frage, wann es im System S' nur noch ein E'-Feld hat, also dass B'=0
gilt. Aus den Gleichungen (27.2) folgt dann

v
B,=0 , B, +—

v
CZ-EZ=0 und BZ—C—Z-Ey=O

also
v v

B,=0 , B,=-%-E und B,=Z-E, (36.2)

C2
Damit sind auch die beiden notwendigen Bedingungen E - B = 0 und E? —c?-B2 > 0 erfillt.

Es wird noch einmal deutlich, dass sich ein reines E-Feld oder ein reines B-Feld nicht wegtransformieren lassen.



C37

Der Nabla-Operator als Viererform

Die Gleichungen von Maxwell lassen sich mit dem Vierer-Nabla-Operator elegant schreiben, der definiert ist durch

(16666)

i = 255@5 (37.1)
Wir wollen nun zeigen dass gilt
,_(1 o a9 0 6>_N -1 375
P \ce ot ax' ey a7 ) T (37.2)
Mit anderen Worten: N; transformiert sich wie eine Viererform, also gemaéss (9.6) .
Esist
1 9 0 o 0 yy-ﬂOOla a 1 a a a 0
_ . 0 0
N.-L 1=<_._’_’_’_>. y-B 14 =(_. —ty - B=—=, =y -B-—+ ._’_’_>
! c ot ’'dx 9y oz 0 0 10 cyatyﬂaxc}/ﬁatyaxayaz
0 0 0 1
Wir miissen nun zeigen, dass wir rechts N;' erhalten haben.
.8 8 . I o
e esist 3 = dain unserem Setting immer dy = dy’ gilt
e genauso gilt auch % = %

esseinun f eine beliebige Funktion, die von der Variablen t’ abhéngt. Die Gleichungen (1.1) zeigen wie
t' selber von t und x abhéngt. Es gilt

of of ot of ox _of  of
ot “ot ot Tax e ot YTV Ee
Somit ist

10 10 P

c at' ¢ 14 Jat VB Ox

und der Beweis ist auch fiir die erste Komponente von N;' gefiihrt.

Genauso zeigen wir noch, dass (37.2) auch fir die zweite Komponente richtig ist:

of of ot of ox _ of 1 of
PPl Tl e ol e TR A e
Somit
o 1 0, 2
6x’_cyﬁ6t Vax

Das ist genau der Term den wir oben mit dem Produkt N; - L™1 erhalten haben.

Unser Operator transformiert sich also wie eine Viererform.



C38 Die Gleichungen von Maxwell fiir das Vakuum

2 9 9 )T eschrieben. Er wird als
ax 'dy ‘oz g :

Spaltenvektor aufgefasst, der dann mit den Feldvektoren Skalarprodukte oder Vektorprodukte bilden soll.

Die Gleichungen von Maxwell werden gerne mit dem 3d-Nabla-Operator V = (

= 1 oE 9E |, OF 1
v = p soll also heissen Pl 3y + 3, = p Ho Co-p

Quellen des elektrischen Feldes sind die elektrischen Ladungen.

e VxB= Uo (f+ & -Z—f) bedeutet ausgeschrieben

- = - - = - \T - = - \T
0B, 0By 9By 0B, 0By 9By , 0Ey . 0Ey, . 0E;
Pz Ty Bx OB Ty Bk} _ . gy - 22X g =2, P

(ay 9z ' 8z ox ' ox  dy Bo-\Uxt & 50 Jytéo 50 Jzt &0 )

Wirbel im B-Feld entstehen um Stréme und bei zeitlich veranderlichen E-Feldern. J ist dabei der 3d-Strom-
dichtevektor

Diese 143 Gleichungen kénnen wir mit der Matrix F zu einer einzigen Gleichung zusammenfassen :

0 E E, E,
1 0 9 9 0 E, 0 c-B, —c-By .
<__t’$’a_'5> E, —cB, 0 c-B, | =€ Ho (€ P =iy —J2) (38.1)
E, c¢-B, —c-By 0

Mit unseren Bezeichnern kdnnen wir (38.1) sehr schlank schreiben:
Ni-F = c-po-J; (38.2)
Dabeiist J; = (¢ p,—jx —Jy,—j,) die Viererform zum Viererstrom J t, und wir haben zudem beniitzt dass gilt

g o = 1/c%.

Wir kommen nun zur zweiten Hilfte von Maxwells Gleichungen.

= 9B a8 dB . . . . . .
e V-B =0 bedeutet P + % + 5 = 0 . Das magnetische Feld ist 'quellenfrei’, es gibt keine magnetischen
Monopole.
= o8B 0F, 0E, 0E, 0F, 9By, 0B\ aF o8 a8, \!
. xE ==-2 bz %y 9Ex OEz 9% OBx) _ (_98x _ %% _ %%y
v ot bedeutet <ay oz ' oz ox ’ ox ay ot 7 ot ' ot

Wirbel im elektrischen Feld werden durch zeitlich verdnderliche Magnetfelder verursacht.

Diese 1+3 Gleichungen kdnnen wir mit der Matrix M zu einer einzigen Gleichung zusammenfassen :

0 c-By ¢-B, c¢-B,
o 9 o0 d c-B, 0 —E E

T ST RS A A = (0,0,0,0 383
c-B, —E, E 0

oder mit unseren Bezeichnern

N;-M = (0,0,0,0) (38.4)



C39 Maxwells Gleichungen sind forminvariant

Im letzten Abschnitt haben wir gesehen, dass die 2-(1 + 3) Gleichungen von Maxwell mit unseren Matrizen sehr
konzentriert geschrieben werden konnen:

Ni-F = c-po-J;

und
Ni M = Oi

mit den Linearformen  J; = (¢ - p, —jx, —jy, —jz) und 0; =(0,0,0,0).

Wir wissen auch von allen beteiligten Grossen, wie sie sich beim Ubergang vom Bezugssystem S zu einem anderen
Bezugssystem S' transformieren. Damit wird es nun sehr leicht zu zeigen, dass alle Gleichungen von Maxwell in genau

derselben Form auch in S' gelten, wenn sie in S gelten:

N,-M = 0,
& N;-L*L-M =0
& (N;- LD -(L-M-LY) = 0;- L1
= N/'-M = 0

Damit ist die Forminvarianz der zweiten vier Gleichungen bewiesen. Genau gleich machen wir es fiir die ersten vier

Gleichungen:

Ni-F = c-po-J;
= N-LY-L-F = c-py-J;
& WL LFLY = cop- (e LY
= N/ F' = c-uo-Ji

Hier ernten wir die Friichte unserer Vorbereitungsarbeiten !

Maxwells Theorie des elektromagnetischen Feldes, die Invarianz der elektrischen Ladung, die Formulierung der Lorentz-
Kraft und die Spezielle Relativititstheorie passen bestens zusammen.



C40 Kosmetik am elektromagnetischen Feld

In den Matrizen F und M erscheinen das elektrische und das magnetische Feld etwas asymmetrisch. Das liesse sich mit
einer kleinen Anderung der Definition des elektrischen Feldes beheben und hitte allerhand weitere dsthetische Vorteile :

e Das elektrische Feld sei neu definiert durch E :=E/c
Die Definition des magnetischen Feldes wird beibehalten: B := B
Beide Felder haben damit dieselben Einheiten, ndmlich 'Tesla'

e Das elektromagnetische Feld soll neu durch die beiden Matrizen F := F/c und M := M /c beschrieben
werden. Damit verschwindet in den Matrizen der Faktor ¢, die 'Dualitdt' der beiden Matrizen tritt besser

zutage :
0 E, E, E 0 B, B, B,
E. 0 B, -B B, 0 -E, E
F= Ex -B oz B g und M = Bx E oZ —Ey
y z z y z X
E, B, —-B, 0 B, —E, E, 0

e Der Faktor ¢ verschwindet auch im Kraftgesetz: K= q:F-U statt wie bisher K = % -F-U

e Bei der zweiten Halfte der 8 Gleichungen von Maxwell verschwindet der Faktor c :
N;-F = yo-J; statt wie bisher N;-F = c-uy+J;

e Beiden Determinanten von F und M verschwindet ein Faktor c? :
det(M) = det(F) = —(E-B)? statt wie bisher det(M) = det(F) = —c? - (E - B)?

e Das Produkt der beiden Matrizen F und M wird besonders schon:
F-M = (E-B)-1Id, statt wie bisher F-M = ¢2-(E-B)-1Id,

e Die zweite Invariante des elektromagnetischen Feldes erhalt auch eine symmetrische Gestalt:
E2 — B2 statt wie bisher  E? — ¢? - B?

e Der ganze Satz von Transformationsgleichungen fiir das elektromagnetische Feld, also (25.1), wird neu
symmetrisch in Eund B :

E, = E, B,' = By
Eylzyv’(Ey_B'Bz) BQZVU'(By"'ﬁ’Ez)
EZI=YV'(EZ+ﬁ'By) B£=YV'(BZ_ﬁ'Ey)

e Firdie Dreier-Kraftf gilt neu f =q- (c E + ux §) . Jetzt werden beide Feldvektoren mit einer
Geschwindigkeit multipliziert.

All diese Vereinfachungen wiirden sich von selbst ergeben, wenn die Lichtgeschwindigkeit den einheitenlosen Wert 1
hitte. Dies konnte man zum Beispiel dadurch erreichen, dass man als Langeneinheit die Lichtsekunde verwenden wiirde.
Zeiten und Langen wiirden dann in Sekunden gemessen, und die Lichtgeschwindigkeit hitte den einheitenlosen Wert

'l Lichtsekunde pro Sekunde', also ein 'Licht'.

Einen noch radikaleren Vorschlag hat schon vor langer Zeit Carl Friederich Gauss gemacht: Man solle die Einheiten fiir
das elektrische und das magnetische Feld so festlegen, dass die Feldkonstanten &, und p, beide den Wert 1 haben. Dann
hitte die Lichtgeschwindigkeit ebenfalls den Wert 1, und die Feldkonstanten wiirden aus den Gleichungen von Maxwell
verschwinden.

Die neue Festlegung von E := E/c ist der harmloseste Eingriff, mit dem man die gewiinschte Wirkung erzielen kann.



