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Es wird vorausgesetzt, dass der Leser, die Leserin mit der speziellen Relativitätstheorie bereits vertraut ist etwa im 
Umfang der Darstellung in https://www.physastromath.ch/uploads/myPdfs/Relativ/Ein neuer Pfad.pdf . Auf diese Arbeit 
wird auch hin und wieder Bezug genommen. So meint  [1 - 21.3] die Formel  21.3  und  [1 - 3] den Abschnitt 3 
von dieser Abhandlung. 
 
Hier geht es darum, den Formalismus der Vierervektoren einzuführen und anhand von Beispielen zu zeigen, wie effizient 
damit Probleme der SRT bearbeitet werden können. Wichtige Quellen waren für mich dabei 
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A1    Der Viererort  𝑋 
 
 
Die Lorentz-Transformationen beschreiben, wie man die Koordinaten (t,x,y,z), die man in einem Bezugssystem S einem 
Ereignis zuordnet, in die Koordinaten (t',x',y',z') umrechnet, welche im Bezugssystem S' zu demselben Ereignis gehören.  
Sie sind durch die folgenden Gleichungen gegeben [1 - 20.5] : 
 

𝑡	 = 𝛾+ · 𝑡′	 + 	𝛽+ ·
𝑥′
𝑐

																																																	𝑡′	 = 𝛾+ · 𝑡	 − 	𝛽+ ·
𝑥
𝑐
															 

 
𝑥	 = 	 𝛾+ · 	𝑥′	 + 	𝛽+ · 𝑐 · 𝑡′	 																																										𝑥′	 = 	 𝛾+ · 	𝑥	 − 	𝛽+ · 𝑐 · 𝑡	 								 

(1.1) 
𝑦	 = 	𝑦′																																																																				𝑦′	 = 	𝑦																		 

 
𝑧	 = 	𝑧′																																																																				𝑧′	 = 	𝑧																			      

 

𝛾  und  𝛽  sind dabei die bekannten Abkürzungen     𝛾	 = 	 𝛾+ 	= 	 1 −
+6

76

896     und    𝛽 = 𝛽+ = 	
+
7
   .                          (1.2) 

 
Die beiden Bezugssysteme (oder Koordinatensysteme) sind dabei immer speziell ausgerichtet: Die beiden x-Achsen 
liegen aufeinander, die beiden y- und die beiden z-Achsen sind stets parallel zueinander, und die Geschwindigkeit von S' 
aus der Sicht von S hat nur eine x-Komponente :  𝒗 	= (𝑣, 0, 0). Zudem wurden bei der Begegnung der beiden 
Koordinaten-Nullpunkte die dortigen Mutteruhren in beiden Bezugssystemen auf null gestellt; anschliessend wurden alle 
anderen Uhren im jeweiligen Bezugssystem mit ihrer Mutteruhr synchronisiert (siehe [1 - 20]). 
 
Die Gleichungen (1.1) lassen sich unter Verwendung der Lorentz-Matrix  𝐿  elegant zusammenfassen: 
 

𝑐 · 𝑡′
𝑥′
𝑦′
𝑧′

	= 	

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

·

𝑐 · 𝑡′
𝑥
𝑦
𝑧

                                                     (1.3) 

 
Die Zeitkomponente wird mit der Lichtgeschwindigkeit  𝑐  multipliziert damit alle 4 Komponenten dieselben Einheiten 
haben. Die Spaltenvektoren, welche die Koordinaten eines Ereignisses zusammenfassen, heissen der Viererort dieses 
Ereignisses und werden mit  𝑋  respektive  𝑋′	 bezeichnet. Mit diesen Namen lassen sich (1.1) und (1.3) noch kürzer 
schreiben: 

𝑋′	 = 	𝐿 · 𝑋	                                                                                  (1.4) 
 
Die inverse Transformation benutzt die inverse Matrix  𝐿8A , die sich von  𝐿  nur darin unterscheidet, dass die Minus-
zeichen verschwunden sind. Die Rücktransformation lässt sich so kurz schreiben als 
 

𝑋	 = 	 𝐿8A · 𝑋′	                                                                               (1.5) 
 
 
Vektoren, die sich beim Übergang vom Bezugssystem S zum Bezugssystem S' auf diese Art transformieren, nennen wir 
allgemein  Vierervektoren.  
 
Den Viererort oder die Viererposition  𝑋  schreiben wir auch mit   𝑋	 = 	 (𝑐 · 𝑡	, 𝑥	). Der Term  𝑐 · 𝑡  ist die zeitliche 
Komponente, der 3d-Vektor 𝑥  die räumliche Komponente des Vierervektors. Ein Vierervektor ist immer als Matrix mit 
einer Spalte und vier Zeilen aufzufassen. 
 
 
 
 
 
 
 
  



A2    Linearkombinationen von Vierervektoren 
 
 
Wegen der Linearität der Abbildung durch Multiplikation mit der Matrix  𝐿  ist mit den Vierervektoren  𝑋  und  𝑌  auch 
jeder Vektor 

𝑚 · 𝑋	 + 	𝑛 · 𝑌 
 
ein Vierervektor, wenn  𝑚  und  𝑛  Konstanten sind, die in allen Inertialsystemen denselben Wert haben. 
 
Damit ist auch der Vektor  ∆𝑋	 = 	𝑋(𝑡F) 	− 	𝑋(𝑡A) 	= 	 (𝑐 · ∆𝑡	, ∆𝑥	)  als Differenz von Vierervektoren ein Vierervektor.  
 
Mit den relativistischen Invarianten  𝑚G  und  𝜚G  werden wir so aus der Vierergeschwindigkeit  𝑈  den Viererimpuls  
𝑃 = 	𝑚G · 𝑈  und den Ladungs-Stromdichte-Vektor  𝐽 = 	 𝜚G · 𝑈  gewinnen. In C32 wird gezeigt, wie sich der gesamte 
Viererstrom in einem stromführenden Draht als Summe von zwei elementareren Viererströmen denken lässt. 
 
 
 
 
 
 
  



A3    Die Ableitung nach der Eigenzeit  𝜏		und die Vierergeschwindigkeit 𝑈 
 
 
Wenn wir den Vierer-Ortsvektor   𝑋	 = 	 (𝑐 · 𝑡	, 𝑥	)  nach der Zeit  𝑡  ableiten erhalten wir den Vektor (𝑐	, 𝑢	), wo  𝑢	 die 
Geschwindigkeit beschreibt, mit der sich eine Position  𝑥	  im System S ändert (der Variablenname 𝑣 bleibt reserviert für 
die Relativgeschwindigkeit der beiden Bezugssysteme). Wir erhalten damit aber keinen Vierervektor, schon die erste 
Komponente transformiert sich nicht wie verlangt. Im Allgemeinen gilt nämlich 
 

𝛾 · 𝑐	 − 𝛾 · 𝛽 · 𝑢K 		≠ 		𝑐 
 
wie man zum Beispiel durch Einsetzen von  𝑢 = (0, 𝑐/2, 𝑐/2) sofort sieht. 
 
Man kann auch nicht erwarten, dass die Ableitung nach der Zeit  𝑡  in einem beliebigen Koordinatensystem einen 
Vierervektor liefert, da ja die Zeit in jedem Bezugssystem mit einer anderen Geschwindigkeit abläuft. Es gibt aber ein 
Bezugssystem, welches in dieser Hinsicht ausgezeichnet ist : Es ist dasjenige, in welchem das bewegte Objekt momentan 
gerade ruht, das sogenannte Eigensystem des bewegten Objekts (Englisch: The comoving inertial frame). Für alle 
Bezugssysteme gilt 
 

∆𝑡F − ∆𝑥F − ∆𝑦F − ∆𝑧F 	= 		 ∆𝜏F − 0 − 0 − 0	 = 	∆𝑡′F − ∆𝑥′F − ∆𝑦′F − ∆𝑧′F                                    (3.1) 
 
Das Eigenzeit-Intervall  ∆𝜏  ist damit eine relativistische Invariante. Damit ist nach  A2  der Vektor  A

∆O
· ∆𝑋  ebenfalls 

ein Vierervektor, und zwar für jedes noch so kleine Zeitintervall ∆𝜏 . Das gilt demnach auch im Limes für  ∆𝜏	 → 0 , also 
für die Ableitung des Viererortes nach der Eigenzeit. Wir definieren daher die Vierergeschwindigkeit  𝑈  durch 
 

𝑈	 = 	 lim
∆O→G

	∆T
∆O
		= 	 U

UO
(𝑋)                                                                         (3.2) 

 
Nun gilt für jedes Koordinatensystem S , dass alle anderen Zeiten langsamer laufen als die eigene. (3.1) zeigt deutlich, 
dass  Δ𝑡	 grösser ist als  Δ𝜏	. Es ist also 

 

Δ𝜏	 = 	Δ𝑡 · 1 − W6

76
	= 		Δ𝑡	/	𝛾W									und	daher											

𝑑𝑡
𝑑𝜏 		= 	 𝛾W			                                    (3.3) 

 
Mit der Kettenregel lässt sich damit die Ableitung nach der Eigenzeit  𝜏  gut berechnen: 
 

𝑈	 = 	 U
UO
(𝑋) 		= 		 U

U`
(𝑋) · U`

UO
		= 		 𝛾W ·

U
U`
(𝑋) 	= 		 𝛾W ·

U
U`
(𝑐 · 𝑡	, 𝑥	) 	= 	 𝛾W · (𝑐	, 𝑢	)                         (3.4) 

 
𝑈		 = 	 𝛾W · (𝑐	, 𝑢	)  ist also die gesuchte Vierergeschwindigkeit. Zudem haben wir gesehen, dass die Ableitung eines 
Vierervektors nach der Eigenzeit  𝜏  ganz allgemein wieder einen Vierervektor liefert, und wir haben weiter gelernt, wie 
wir diese Ableitung bilden können. 
 
Es muss noch betont werden, dass die Vierergeschwindigkeit eine technische Hilfsgrösse ist. Sie hat keine Entsprechung 
in der physikalischen Realität in dem Sinne, dass sie gemessen werden könnte. Gemessen werden weiterhin nur 3d-
Geschwindigkeitsvektoren. 
 
Die Eigengeschwindigkeit eines Objektes ist immer  𝑈 = 	𝛾G · (𝑐	, 0	) = 1 · (𝑐	, 0	) = (𝑐, 0,0,0)a.                               (3.5) 
 
Der hochgestellte Buchstaben T steht dabei für die Transposition  des Zeilenvektors in einen Spaltenvektor. 
 
 
 
 
 
  



A4    Der Viererimpuls  𝑃 
 
 
Wenn wir den Vierervektor der Geschwindigkeit mit der invarianten Ruhemasse 𝑚G  multiplizieren erhalten wir nach A2  
wieder einen Vierervektor. In diesem Fall ist das der Viererimpuls 
 

𝑃	 = 	𝑚G · 𝑈	 = 	𝑚G · 𝛾W · (𝑐	, 𝑢	) 	= 	 (	
A
7
· 𝐸`c`	, 𝑝	)                                                             (4.1) 

 
Der Dreiervektor  𝑝  ist hier schon der nach SRT korrigierte Impulsvektor   𝑝 	= 	 𝛾W · 𝑚G · 𝑢	, und wir haben zudem die 
Beziehung  𝐸`c` 	= 	 𝛾W · 𝑚G · 𝑐F  verwendet.  
 
 
 
 
A5    Der Viererstrom  𝐽 
 
 
Wenn man die Vierergeschwindigkeit  𝑈  mit  der im Ruhesystem der Ladungen gemessenen Ladungsdichte  𝜌G 
multipliziert erhält man den Vierervektor der Ladungs- und Stromdichte oder kürzer den Viererstrom 
 

𝐽	 = 			 𝜌0 · 𝑈	 = 	 𝜌0 · 𝛾𝑢 · (	𝑐, 𝑢	)                                                                            (5.1) 
 

Diese Darstellung gilt für eine 'Ladungswolke', die sich kompakt mit der Geschwindigkeit 𝑢 bewegt. In einem Draht 
bewegen sich aber im Laborsystem nur die Leitungselektronen, während die gesamte Ladungsdichte null ist. Es nimmt 
also nur die Hälfte der Ladungsträger an der Bewegung teil. Dort gilt die allgemeinere Darstellung 
 

𝐽	 = (	𝜌 · 𝑐	, 𝑗	)                                                                                            (5.2) 
 
wo 𝜌 die im aktuellen Bezugssystem gemessene gesamte Ladungsdichte ist (die in einem stromführenden Leiter ja null 
sein kann) und  𝚥  den Stromdichtevektor bezeichnet.  𝑗K · 𝐴K	 ist die Stromstärke 𝐼K  in der x-Richtung, wenn 𝐴K den 
Leiterquerschnitt und 𝑢K die Geschwindigkeit der Ladungsträger in der x-Richtung bezeichnen (→ C32). 
 
 
 
 
A6    Die Viererkraft  𝐾 
 
 
Nach  A3  ist die Ableitung eines Vierervektors nach der Eigenzeit wieder ein Vierervektor. Leiten wir den Viererimpuls 
nach der Eigenzeit  𝜏  ab erhalten wir die Viererkraft  𝐾 : 
 

𝐾	 = 	 U
UO
(𝑃) 		= 		 U

U`
(𝑃) · U`

UO
		= 		𝛾 · U

U`
(𝑃) 	= 		𝛾 · U

U`
(	A
7
· 𝐸	, 𝑝	) 	= 	𝛾 · (	A

7
· Ui
U`
	 , Uj

U`
	)                           (6.1) 

 

Nun ist definitionsgemäss  	Uj
U`
	= 	 𝑓	, wo  𝑓  für den gewöhnlichen 3d-Kraftvektor steht. Und für die Leistung  Ui

U`
  gilt 

ebenfalls definitionsgemäss 
 

Ui
U`
	= 	 𝑓 · 𝑢 	= 	 𝑓 · UK

U`
														oder											𝑑𝐸	 = 	 𝑓 · 𝑑𝑥		                                                    (6.2) 

 
Damit können wir für die Viererkraft  𝐾  schreiben 
          

𝐾	 = 	 U
UO
(𝑃) 		= 	𝛾 · (	A

7
· Ui
U`
	 , Uj

U`
	) 	= 		𝛾 · (	A

7
· 𝑓 · 𝑢	, 𝑓	)                                                   (6.3) 

 
Mit  𝐸  bezeichnen wir dabei immer die Gesamtenergie  𝐸`c` . Der Buchstabe  𝐹  bleibt für die Matrix reserviert, mit der 
wir das elektromagnetische Feld beschreiben.  



A7    Die Viererbeschleunigung  𝐴 
 
 
Die Ableitung der Vierergeschwindigkeit nach der Eigenzeit 𝜏  liefert die Viererbeschleunigung 
 

𝐴	 = 	 U
UO
(𝑈) 		= 		 U

U`
(𝑈) · U`

UO
		= 		𝛾 · U

U`
(𝑈) 	= 		𝛾 · U

U`
(𝛾 · (	𝑐, 𝑢	)) 	= 	𝛾 · U

U`
(𝛾) · (	𝑐, 𝑢	) 	+ 	𝛾 · U

U`
(	𝑐, 𝑢	)            (7.1) 

 
Wir müssen also  𝛾	 nach  𝑡  ableiten: 
 

U
U`
(𝛾) 	= 	 U

U`
		 1 − W6

76

896 	= 		 U
UW
	 1 − W6

76

896 · UW
U`
	= 		− A

F
· 1 − W6

76

8n6 · − F	W
76

· 𝑎 	= 	 𝛾p · 𝑐8F · 𝑢 · 𝑎            (7.2) 

 
wo  𝑎 = UW

U`
	  der gewöhnliche 3d-Beschleunigungsvektor ist. Damit lässt sich (7.1) fortsetzen zu 

 
𝐴	 = 	 U

UO
(𝑈) 		= 	𝛾 · U

U`
(𝛾) · (	𝑐, 𝑢	) 	+ 	𝛾 · U

U`
(	𝑐, 𝑢	) 	= 	 𝛾q · 𝑐8F · 𝑢 · 𝑎 	 · (	𝑐, 𝑢	) 	+ 	𝛾F · (0, 𝑎)                    (7.3) 

 
Allein aufgrund der Definition gilt in der SRT die Beziehung  𝐾 = 𝑚G · 𝐴  : 
 

𝐾	 = 	 U
UO
(𝑃) 	= 	 U

UO
(𝑚G · 𝑈) 	= 	𝑚G ·

U
UO
(𝑈) 	= 		𝑚G · 𝐴                                                     (7.4) 

 
Wenn wir jetzt (6.3) mit (7.3) kombinieren erhalten wir 
 

𝐾	 = 	𝛾 · (	A
7
· Ui
U`
	 , Uj

U`
	) 	= 		𝛾 · (	A

7
· 𝑓 · 𝑢	, 𝑓	) 	= 	𝑚G · 	 𝛾q · 𝑐8F · 𝑢 · 𝑎 	 · (	𝑐, 𝑢	) 	+ 	𝛾F · (0, 𝑎)                      (7.5) 

 
Eine genauere Betrachtung von (7.5) zeigt, dass in der SRT die Kraft  𝑓  und die Beschleunigung  𝑎  nicht mehr parallel 
sein müssen ! 
 
 
Wenn  𝑢  und  𝑎  parallel sind ist nach (7.5) auch 𝑓  parallel zu 𝑎  . Die zeitliche Komponente von (7.5) liefert uns dann 

 
Ui
U`
	= 	 𝑓 · 𝑢 	= 	 𝛾p · 𝑚G · 𝑢 · 𝑎     

und es folgt 
                       𝑓 = 	 𝛾p · 𝑚G · 𝑎                                                                                    (7.6) 

 
In diesem Fall einer linearen Beschleunigung hat man um 1905 herum noch von der 'longitudinalen Masse'  𝛾p · 𝑚G  
gesprochen.  
 
 
Steht die Kraft  𝑓  senkrecht auf der Geschwindigkeit  𝑢  des schnellen Objektes verschwindet der erste Summand auf 
der rechten Seite von (7.3) und (7.5). Dann erhalten wir aus (7.5) die einfache Beziehung 
 

  𝑓 = 	 𝛾 · 𝑚G · 𝑎                                                                                       (7.7)      
 
Den Term  𝛾 · 𝑚G  hat man deshalb früher als 'transversale Masse' bezeichnet. In diesem Fall ist die Energieänderung  Ui

U`
  

null.  Das ist zum Beispiel immer der Fall wenn nur die Lorentzkraft auf ein geladenes Teilchen wirkt. 
 
 
 
 
  
  



A8    Ein spezielles Skalarprodukt für Vierervektoren 
 
 
Die Stärke der Vierervektoren liegt darin, dass für sie ein spezielles Skalarprodukt existiert, welches einen Wert liefert, 
der unabhängig ist davon, in welchem Bezugssystem er berechnet worden ist. Das Skalarprodukt  𝑋 ∘ 𝑌  liefert also 
immer einen invarianten Term. Es kann deshalb in jenem Bezugssystem berechnet werden, in welchem die Rechnung 
besonders einfach ist! 
 
Nun zur Definition. Es seien also  𝑋s  und  𝑌s  zwei Vierervektoren mit den Komponenten  𝑥G  bis  𝑥p  sowie  𝑦G  bis  𝑦p . 
Dann definieren wir 
 

𝑋s ∘ 𝑌s 	≡ 		 𝑥G · 𝑦G − 𝑥A · 𝑦A − 𝑥F · 𝑦F − 𝑥p · 𝑦p                                                        (8.1) 
 

Das Skalarprodukt ist offensichtlich kommutativ ! 
 
Wir betrachten anhand eines Viererortes und einer Vierergeschwindigkeit die Folgen dieser Definition. 
 
Es sei also  𝑋s 	= (𝑐 · 𝑡	, 𝑥	) 	= 	 (𝑐 · 𝑡, 𝑥, 𝑦, 𝑧)a ein Viererort (das hochgestellte 𝑇 bedeutet die Transponierung der 
1x4-Matrix zu einer 4x1-Matrix). Nach der Definition (8.1) gilt 
 

𝑋s ∘ 𝑋s 	= 	 (𝑐 · 𝑡)F − 𝑥F − 𝑦F − 𝑧F 	= 	 𝑐 · 𝜏 F                                                        (8.2) 
 

Das Ergebnis ist tatsächlich unabhängig vom Bezugssystem, in welchem es berechnet worden ist. 
 
Dasselbe stellen wir fest, wenn wir eine beliebige Vierergeschwindigkeit  𝑈s = 	𝛾 · (𝑐	, 𝑢	) = 𝛾 · (𝑐, 𝑢K, 𝑢v, 𝑢w)a nehmen 
und das Skalarprodukt  𝑈s ∘ 𝑈s berechnen: 
 

𝑈s ∘ 𝑈s 	= 	𝛾 · (𝑐	, −𝑢	)a · 𝛾 · (𝑐	, 𝑢	) 	= 𝛾F · (𝑐F − 𝑢F) = 	 A

A8x
6

y6
	 · (𝑐F − 𝑢F) 	= 	 76

768W6
	 · (𝑐F − 𝑢F) 	= 	 𝑐F             (8.3) 

 
Das Ergebnis ist hängt offensichtlich auch nicht von der Wahl des Bezugssystems ab. 
 
Im nächsten Abschnitt führen wir zu jedem Vierervektor noch eine zugehörige Vierer-Linearform ein. Mithilfe dieser 
Viererformen beweisen wir dann den entscheidenden  
 
Satz:       Das Skalarprodukt  𝑋 ∘ 𝑌	 zweier Vierervektoren ist unabhängig davon, in welchem Bezugssystem             (8.4) 
  es berechnet worden ist:   𝑋 ∘ 𝑌 = 𝑋′ ∘ 𝑌′	                                                                                                                                                       
 
  



A9    Vierer-Linearformen und das Skalarprodukt 
 
 
Zu jedem Vierervektor  𝑋s = 	 (𝑥G, 𝑥A, 𝑥F, 𝑥p)a definieren wir eine zugehörige Viererform duch 
 

𝑋s = 	 (𝑥G, −𝑥A, −𝑥F, −𝑥p)                                                                                  (9.1) 
 

Eine Vierer-Linearform hat also die Gestalt einer Matrix mit einer Zeile und vier Spalten, ein Vierervektor ist eine 
Matrix mit einer Spalte und vier Zeilen. Man beachte die jeweilige Position des Index  𝑖  !  
 
Mit diesen Viererformen können wir das Skalarprodukt vom Abschnitt  A8  als gewöhnliches Produkt von Matrizen 
schreiben: 
 

𝑋s ∘ 𝑌s 	= 	

𝑥G
𝑥A
𝑥F
𝑥p

∘

𝑦G
𝑦A
𝑦F
𝑦p

	≡ 	𝑥G · 𝑦G − 𝑥A · 𝑦A − 𝑥F · 𝑦F − 𝑥p · 𝑦p 		= 	 (𝑥G, −𝑥A, −𝑥F, −𝑥p) ·

𝑦G
𝑦A
𝑦F
𝑦p

	= 	𝑋s · 𝑌s          (9.2) 

 
Wegen der Symmetrie unseres Skalarproduktes gilt 
 

		𝑋s · 𝑌s 	= 	𝑋s ∘ 𝑌s 	= 	𝑌s ∘ 𝑋s 	= 	𝑌s · 𝑋s                                                                    (9.3) 
 

Zur Vorbereitung des Beweises der Invarianz unseres Skalarproduktes führen wir noch die Matrix  𝐺  ein : 
 

𝐺	 = 	

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

                                                                                (9.4) 

 
Einfache Rechnungen zeigen, dass die folgenden Gleichungen erfüllt sind: 
 

𝐺a = 	𝐺	 = 	𝐺8A			,					𝐿8A 	= 	𝐺8A · 𝐿 · 𝐺				,				𝐿	 = 	𝐺8A · 𝐿8A · 𝐺					,				𝑋s 	= 		 𝐺 · 𝑋s a 	= 	 𝑋s a · 𝐺                  (9.5) 
 

Nun gilt für Vierervektoren nach (1.2) oder definitionsgemäss  𝑋s′	 = 	𝐿 · 𝑋s . Wie transformieren sich die zugehörigen 
Viererformen? Aus   𝑋s′	 = 𝐿 · 𝑋s   erhalten wir mit (9.5) 
 

𝑋s| = 𝑋s′ a · 𝐺	 = 𝐿 · 𝑋s a · 𝐺	 = 	 𝑋s a · 𝐿a · 𝐺	 = 	 𝑋s a · 𝐿 · 𝐺	 = 
 

= 	 𝑋s a · 𝐺 · 𝐺8A · 𝐿 · 𝐺	 = 	 𝑋s a · 𝐺 · 𝐺8A · 𝐿 · 𝐺	 	= 	𝑋s · 𝐿8A 
 

Für Viererformen gilt also     
 

           					𝑋s′	 = 	𝑋s · 𝐿8A										und												𝑋s 	= 	𝑋s′ · 	𝐿		                                                           (9.6) 
 

 
Damit sind wir gut vorbereitet für den Beweis der Invarianz unseres Skalarprodukts: 
 

𝑋s′ ∘ 𝑌s′	 = 		 𝑋s′ · 𝑌s′	 = 	 𝑋s · 𝐿8A · 𝐿 · 𝑌s 	= 	𝑋s · (𝐿8A · 𝐿) · 𝑌s 	= 	𝑋s · 𝑌s = 	𝑋s ∘ 𝑌s                       (9.7) 
 

Damit ist der Satz (8.4) bewiesen. 
 
 
   
  



A10    Einige weitere ausgewählte Skalarprodukte von Vierervektoren 
 
 
Im Abschnitt A8  haben wir 𝑈 ∘ 𝑈 schon einmal berechnet. Nun benützen wir den Satz (8.4) und rechnen für eine 
beliebige Vierergeschwindigkeit  𝑈	 = 	𝛾 · 	𝑐, 𝑢	   mit der Eigengeschwindigkeit  𝑈′ = 1 · (𝑐, 0) 
 

 𝑈 ∘ 𝑈		 = 	𝑈′ ∘ 𝑈′	 = 	1 · (𝑐, −0)a · 1 · (𝑐, 0) 	= 		 𝑐F                                                  (10.1) 
 
Die Rechnung wird ganz einfach, wenn man sie im Eigensystem des schnellen Teilchens durchführt ! Vergleichen Sie 
mit der Berechnung von  𝑈 ∘ 𝑈  im Abschnitt A8 . 
 
Für den Impuls  𝑃 = 𝑚G · 𝑈   gilt mit (10.1) 
 

𝑃 ∘ 𝑈	 = (𝑚G · 𝑈) ∘ 𝑈	 = 	𝑚G · (𝑈 ∘ 𝑈) 	= 	𝑚G · 𝑐F 	= 	𝐸G	                                             (10.2) 
und 
 

𝑃 ∘ 𝑃	 = (𝑚G · 𝑈) ∘ (𝑚G · 𝑈) 	= 	𝑚G
F · (𝑈 ∘ 𝑈) 	= 	𝑚G

F · 𝑐F	                                         (10.3) 
 
 

Für die Viererbeschleunigung  𝐴 = U
UO
(𝑈)  und die Vierergeschwindigkeit  𝑈  gilt im Eigensystem  𝑢′ = 0  und somit    

𝑈′	 = 	1 · (𝑐, 0) . Nach (7.3) ist daher  𝐴′ = 𝛾F · (0, 𝑎′) 	= 	1 · (0, 𝑎′) . Damit erhalten wir allgemein 
 

𝐴 ∘ 𝑈	 = 	𝐴′ ∘ 𝑈′	 = 	 (0, −𝑎′)a · (𝑐, 0) 	= 	0                                                       (10.4) 
 
Damit gilt auch für die Viererkraft 

 
𝐾 ∘ 𝑈	 = 	 𝑚G · 𝐴 ∘ 𝑈	 = 	𝑚G · 𝐴 ∘ 𝑈 		= 𝑚G · 0	 = 	0                                           (10.5) 

 
 
Für die Viererbeschleunigung  𝐴  gilt nach (7.3) 
 

𝐴 = 	𝛾q · 𝑐8F · 𝑢 · 𝑎 	 · (	𝑐, 𝑢	) 	+ 	𝛾F · (0, 𝑎) 
 
Es ist also 

𝐴G = 	 𝛾q · 𝑐8F · 𝑢 · 𝑎 · 𝑐																									 
𝐴A = 	 𝛾q · 𝑐8F · 𝑢 · 𝑎 · 𝑢K 	+ 		𝛾F · 𝑎K	 
𝐴F = 	 𝛾q · 𝑐8F · 𝑢 · 𝑎 · 𝑢v 	+ 		𝛾F · 𝑎v	 
𝐴p = 	 𝛾q · 𝑐8F · 𝑢 · 𝑎 · 𝑢w 	+ 		𝛾F · 𝑎w	 

 
und daher 

 
𝐴 ∘ 𝐴 = 	 𝐴G F − 𝐴A F − 𝐴F F − 𝐴p F 	= 	 𝛾} · 𝑐8q · 𝑢 · 𝑎 F · 𝑐F − 𝑢KF − 𝑢vF − 𝑢wF 	−														 

  
														2 · 𝛾~ · 𝑐8F · 𝑢 · 𝑎 · 𝑢K · 𝑎K + 𝑢v · 𝑎v + 𝑢w · 𝑎w 	− 	𝛾q · 𝑎KF + 𝑎vF + 𝑎wF 		=					 

 
= 	𝛾} · 𝑐8q · 𝑢 · 𝑎 F · 𝑐F − 𝑢F 	− 	2 · 𝛾~ · 𝑐8F · 𝑢 · 𝑎 F − 	𝛾q · 𝑎F 		=																															 

 
= 	𝛾} · 𝑐8F · 𝑢 · 𝑎 F · 7

68W6

76
	− 	2 · 𝛾~ · 𝑐8F · 𝑢 · 𝑎 F − 	𝛾q · 𝑎F 		=																																							           

 
						= 	 𝛾~ · 𝑐8F · 𝑢 · 𝑎 F 	− 	2 · 𝛾~ · 𝑐8F · 𝑢 · 𝑎 F − 	𝛾q · 𝑎F 		= 	−	𝛾~ · 𝑐8F · 𝑢 · 𝑎 F − 	𝛾q · 𝑎F 

																																					 
Es gilt somit allgemein 
 

𝐴 ∘ 𝐴 = 	−	𝛾~ · 𝑐8F · 𝑢 · 𝑎 F − 	𝛾q · 𝑎F			                                                            (10.6) 
 



Im Eigensystem ist  𝑢′ = 0  und   𝛾 = 1 , dort gilt also  𝐴′ ∘ 𝐴′ = 	−𝑎′F 	≡ 	−𝛼F . Die Eigenbeschleunigung wird also 
mit dem Formelzeichen  𝛼  bezeichnet. Damit können wir (10.6) ergänzen zu 
 

𝐴 ∘ 𝐴 = 	−	𝛾~ · 𝑐8F · 𝑢 · 𝑎 F − 	𝛾q · 𝑎F 	= 	−𝛼F			                                                            (10.7) 
 
Stehen 𝑢  und 𝑎  senkrecht aufeinander (zum Beispiel bei der Lorentz-Kraft) gilt nach (10.7) für die sogenannte 
Zentripetal-Eigenbeschleunigung 
 

   𝛼 		= 𝛾F · 𝑎												und													𝛼 = 	 𝛾F · 𝑎	 = 	 𝛾F · W
6

�
                                                            (10.8)    

 
Bei einer linearen Beschleunigung sind  𝑢  und  𝑎  parallel zueinander. Dann gilt nach (10.7) 
 

𝛼F 	= 		 𝛾~ · 𝑐8F · 𝑢 · 𝑎 F + 	𝛾q · 𝑎F 	= 	 𝛾~ · 𝑐8F · 𝑢F · 𝑎F + 𝛾q · 𝑎F 	=	               
 

= 		 𝛾q · 𝑎F · 𝛾F · W
6

76
	+ 1 	= 	 𝛾q · 𝑎F · 76

768W6
· W

6

76
	+ 1 	=							      

 
= 		 𝛾q · 𝑎F · W6

768W6
	+ 768W6

768W6
			= 		 𝛾q · 𝑎F · 76

768W6
	 		=													    

 
= 	𝛾q · 𝑎F · 𝛾F 	= 	 𝛾~ · 𝑎F																																																																				 

 
Bei einer linearen Beschleunigung beträgt die Eigenbeschleunigung also 
 

𝛼 = 	𝛾p · 𝑎                                                                                                 (10.9) 
 
Nur bei der linearen Beschleunigung gilt damit die Beziehung 
 

𝒇 = 	 𝛾p · 𝑚G · 𝑎 	= 	𝒎𝟎 · 𝜶                                                                                  (10.10) 
 

Im Fall der Zentripetalbeschleunigung haben wir nämlich nach (7.7)  
 

𝒇 = 	 𝛾 · 𝑚G · 𝑎 	= 	
𝟏
𝜸
· 𝒎𝟎 · 𝜶	                                                                                (10.11) 

 
 
 
 
 
 
 
 
 
  



A11    Der Viererimpuls als Erhaltungsgrösse 
 
 
Die Erhaltungssätze für die Gesamtenergie und den Gesamtimpuls können zusammengefasst werden zum Erhaltungssatz 
für den Viererimpuls. 
 
Die Erhaltung des Viererimpulses bedeutet 
 

𝑃s
s

		= 		 𝑃�
�

 

 
wo die Summen über alle beteiligten Teilchen vor und nach einem Vorgang läuft. 
 
Nun ist ja 

𝑃s 	= 	 (
A
7
· 𝐸s	, 𝑝s	)		  

  
Dass die Summe der ersten Komponenten konstant bleibt bedeutet also nichts anderes als die Erhaltung der 
relativistischen Gesamtenergie, und die Konstanz der Summe über die anderen drei Komponenten bedeutet die Erhaltung 
des relativistischen 3d-Gesamtimpulses. 
 
Im zweitenTeil dieser Arbeit, bei den Anwendungsbeispielen, startet man immer mit der Erhaltung des Viererimpulses 
und versucht dann durch Bilden des Skalarprodukts mit anderen Vierervektoren Terme zu finden, die sich einfach 
berechnen lassen: 
 

𝑃A 	+ 	𝑃F 	= 	𝑃p 	+ 	𝑃q 								⟹ 								 𝑃A ∘ 𝑃q + 	𝑃F ∘ 𝑃q 	= 	𝑃p ∘ 𝑃q 	+ 	𝑃q ∘ 𝑃q					 
 
oder 
 

𝑃A 	+ 	𝑃F 	= 	𝑃p 	+ 	𝑃q 							⟹ 							 𝑃A + 	𝑃F ∘ 𝑃A + 	𝑃F 	= 	 𝑃p 	+ 	𝑃q ∘ 𝑃p + 	𝑃q 		 
 
 
Die auftretenden Skalarprodukte berechnet man dann bei freier Wahl in jenem Bezugssystem, in welchem die Rechnung 
am einfachsten ist. 
 
  



B12    Eine theoretische Anwendung 
 

 
Wir beweisen, dass in jedem Bezugssystem  S  für jedes Objekt gilt        𝐸`c`F 		= 		 𝐸GF 	+ 	𝑝F · 𝑐F  .                        (12.1) 
 
 
𝑃  sei der Viererimpuls dieses Objektes im Bezugssystem  S . Es ist  𝑃 = (	𝐸`c`/𝑐	, 𝑝	) . Im Ruhesystem des Teilchens 
hat es den Viererimpuls   𝑃G = 	1 · 𝑚G · (𝑐	, 0	) 	= 	 (	𝐸G/𝑐	, 0	) . 
 
 

• 𝑃 ∘ 𝑃 = 	 𝐸`c`/𝑐 F 	− 	𝑝F								nach	der	Definition	des	Skalarprodukts	
	

• 𝑃G ∘ 𝑃G = 	 𝐸G/𝑐 F 	− 0											dito	
	

• Daraus	folgt	schon							𝐸`c`F 	− 	𝑝F · 𝑐F 		= 		 𝑐F · 𝑃 ∘ 𝑃 		= 	 𝑐F · 𝑃G ∘ 𝑃G 	= 	𝐸GF																																									q.e.d.	
 
 
 
 
 
 
 
 
 
 
 
 
B13    Der Viererimpuls von Photonen 
 
 
Für Photonen reduziert sich (12.1) wegen  𝑚G = 0  auf    𝐸`c`F 		= 		0		 + 	𝑝F · 𝑐F . Es gilt somit für Lichtteilchen 
 

𝐸`c` = 	𝑝 · 𝑐	 = 	𝐸�s� = 	𝐸                                                                        (13.1) 
 

Es ist also  𝑝 = 𝐸/𝑐  . Der Vierervektor eines Photons hat daher die Gestalt 
 

𝑃 = (	𝐸/𝑐	, 𝑝	) 	= 	 i
7
· (	1	, 1	) 	= 	 �·�

7
· (	1	, 1	)                                                        (13.2) 

 
Bewegt sich das Lichtteilchen beispielsweise in die y-Richtung, dann hat der Einheitsvektor  1  die Gestalt   1 = (0,1,0)	.  
 
Wir werden im folgenden oft benützen, dass für den Viererimpuls von Photonen immer gilt 
 

𝑃 ∘ 𝑃 = �·�
7
· �·�
7
· (	1 − 1) 	= 	0                                                                          (13.3) 

 
Es ist ja allgemein  𝑃 ∘ 𝑃 = 𝐸G/𝑐 F . Da Lichtteilchen keine Ruheenergie haben folgt auch daraus sofort (13.3). 
 
 
  



B14    Was misst der schnelle Beobachter ? 
 
 
Ein Objekt bewege sich im System S mit dem Viererimpuls  𝑃 = (	𝐸`c`/𝑐	, 𝑝	) 	= 	𝛾 · 𝑚G · (𝑐	, 𝑣	) . Für einen im System 
S ruhenden Beobachter A gilt dann 
 

• 𝐸`c` = 	𝛾 · 𝑚G · 𝑐F 	= 	𝑐 · 𝑃G 	= 	𝑈G ∘ 𝑃										mit	der	'Eigengeschwindigkeit'					𝑈G = 	1 · (	𝑐	, 0	)	
	

• 𝐸G 	= 	𝑐 · 𝑃 ∘ 𝑃												da	ja						𝑃 ∘ 𝑃	 = 	𝑚G
F · 𝑐F					

	
• 𝐸�s� = 		 𝐸`c` − 	𝐸G 	= 	𝑈G ∘ 𝑃	 − 	𝑐 · 𝑃 ∘ 𝑃			

	
• 𝑚G 	= 	 𝑃 ∘ 𝑃		/	𝑐	

	
 
 
 
 
Nun bewege sich ein Beobachter B mit der Geschwindigkeit  𝑈  im System S . Welche Werte misst dieser Beobachter an 
unserem Objekt ? 
 

• 𝐸G		und		𝑚G		haben	für	B	denselben	Wert	wie	für	den	Beobachter	A	.	Das	sind	ja	Invarianten.	
	

• 𝐸`c`′ = 	𝑈G′ ∘ 𝑃′	 = 	𝑈 ∘ 𝑃									wo			𝑈G′ = 	1 · (	𝑐	, 0	)		die	Eigengeschwindigkeit	von	B	in	seinem	System	S'	ist	
	

• 𝐸�s�′	 = 		 𝐸`c`′ − 	𝐸G′	 = 		𝑈 ∘ 𝑃	 − 	𝑐 · 𝑃 ∘ 𝑃	
	

Alle Werte lassen sich sofort über unser Skalarprodukt berechnen. 
 
 
 
 
 
Wie sieht es aus, wenn unser Objekt ein Photon ist ? Es ist dann   𝑃 = (	𝐸`c`/𝑐	, 𝑝	) 	= 	

�·�
7
· 	 (	1	, 1	)   wo 1  ein 

beliebiger Einheitsvektor ist.  
 
Für beide Beobachter gilt  𝑚G = 0   und   𝐸G 	= 0  , und für beide gilt auch   𝐸	 = 	𝐸�s� = 		 𝐸`c` . Die Energie des 
Photons hat aber nicht für beide denselben Wert:  
 
Für A gilt        𝐸	 = 	𝑈G ∘ 𝑃	 = 	1 · (	𝑐	, 0	) ∘ �·�

7
· 	 (	1	, 1	) 	= 	𝑐 · 𝑃G 	= 	ℎ · 𝑓         

 
Für B gilt        𝐸′	 = 	𝑈 ∘ 𝑃	 = 	𝑈G′ ∘ 𝑃′	 = 		1 · (	𝑐	, 0	) ∘ �·�|

7
· 	 (	1	, 1	) 	= 	ℎ · 𝑓′ 

 
Auch in diesem Fall lassen sich die Werte über das Skalarprodukt bestimmen. 
 
 
 
  



B15    Paarvernichtung 1  
 
 
Ein Elektron und ein Positron sollen frontal zusammenstossen. Wir betrachten die Kollision (und die anschliessende 
Zerstrahlung der beiden) in diesem Abschnitt im Schwerpunktsystem. Es sei 
 
𝐴 der Viererimpuls des Elektrons:   𝐴	 = 	𝛾 · 𝑚G · (	𝑐	, 𝑣	)   
 
𝐵 der Viererimpuls des Positrons:   𝐵	 = 	𝛾 · 𝑚G · (	𝑐	, −𝑣	)   
 
𝐶 der Viererimpuls des einen Photons:    𝐶	 = 	 �·�

7
· 	 (	1	, 1	)   

 
𝐷 der Viererimpuls des anderen Photons:    𝐷	 = 	 �·�

7
· 	 (	1	, −1	)   

 
Der gesamte Dreier-Impuls ist vor der Kollision null, daher muss er auch nachher null sein. Es müssen also zwingend 
zwei Quanten entstehen mit entgegengesetzten Flugrichtungen und gleichen Energien ! Damit haben wir schon die 
räumlichen Komponenten der Gleichung 
 

𝐴	 + 	𝐵	 = 	𝐶	 + 	𝐷 
 
ausgewertet. Die zeitliche Komponente ist identisch mit dem Energieerhaltungssatz: 
 

2 · 𝛾 · 𝑚G · 𝑐	 = 	2 · ℎ · 𝑓/𝑐	 
 
also 

ℎ · 𝑓	 = 	𝛾 · 𝑚G · 𝑐F 
 
 
Die Flugrichtung der beiden Quanten ist nicht bestimmt. 
 
 
  



B16    Paarvernichtung 2  
 
 
Nun soll ein schnelles Positron auf ein ruhendes Elektron stossen. Wir wissen aus dem letzten Abschnitt, dass bei der 
Zerstrahlung zwei Quanten entstehen müssen, deren 3er-Impuls zusammen den 3-er-Impuls des einfallenden Positrons 
ergeben. Wir berechnen die Energien oder die Frequenzen der beiden Quanten für den Fall, dass die Quanten auf der 
Achse des einfallenden Positrons davonfliegen: 
 
 

 
 
 
Die Rechnung führen wir zuerst nicht im System S der Zeichnung durch. Wir betrachten den Vorgang aus einem System 
T , welches sich mit 𝑤, der 'halben Geschwindigkeit' von 𝑣 , bewegt ( siehe [1 - 3] ). Dann sind wir in der Situation des 
vorangehenden Abschnittes B15 und können sofort schreiben 
 

ℎ · 𝑓′	 = 	 𝛾� · 𝑚G · 𝑐F 	= 	𝑚G · 𝑐F · 	 1 −
�
7

896 · 1 + �
7

896      
 
Nun berechnen wir die entsprechenden Frequenzen im System S . Wir benötigen dazu die Formel [1 - 1.4] für den 
longitudinalen Dopplereffekt: 
 

ℎ · 𝑓A 		= 	ℎ · 𝑓′ · 78�
7��

	 = 	𝑚G · 𝑐F · 	 1 −
�
7

896 · 1 + �
7

896 · 1 − �
7

�96 · 1 + �
7

896 	= 	𝑚G · 𝑐F ·
7

7��
     

und                                    (16.2) 

ℎ · 𝑓F 		= 	ℎ · 𝑓′ · 7��
78�

	 = 	𝑚G · 𝑐F · 	 1 −
�
7

896 · 1 + �
7

896 · 1 + �
7

�96 · 1 − �
7

896 	= 	𝑚G · 𝑐F ·
7

78�
   

 
 
Eine ganz mühsame Rechnung bestätigt, dass mit diesen beiden Termen tatsächlich der Energieerhaltungssatz erfüllt ist. 
Mein Dank für die Durchführung dieser Rechnung geht an Mathematica® ...  Es gilt also 
 

ℎ · 𝑓A 		+ ℎ · 𝑓F 		= 	 𝛾+ · 𝑚G · 𝑐F 	+ 	𝑚G · 𝑐F	 
 
Die Lösungen [2 - 29.44] zu dieser Paarvernichtung sehen viel komplizierter aus. 
 
  

(16.1)
1) 



B17    Paarvernichtung 3  
 
 
Wir sind in derselben Situation wie im Abschnitt B16. Nun sei aber gestattet, dass die Quanten im 'mittleren' System T in 
eine beliebige Richtung davon fliegen: 
 

 
 

Das ursprüngliche System S bewegt sich mit  𝑤  nach links gegenüber dem gezeichneten System T . Der obere Quant 
fliegt also dem Beobachter im System S entgegen und hat deshalb eine Frequenz 	𝑓A , die grösser ist als 𝑓′ und auch 
grösser als die Frequenz 	𝑓F des unteren Quants. Wir benützen die allgemeine Dopplerformel von  [1 - 22.1] : 
 

𝑓� 		= 			 𝑓a ·
1

𝛾� · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠𝜑	)

		 

 
Für  𝑓a  haben wir  𝑓′  aus dem letzten Abschnitt B16 einzusetzen. Die grössere Frequenz 	𝑓A  erhalten wir, wenn wir für 
𝜑  den Winkel 𝛼′ einsetzen;  	𝑓F  erhalten wir, wenn wir für 𝜑  den Winkel 180° − 𝛼′ einsetzen: 

 

ℎ · 𝑓A 		= ℎ · 𝑓′	 ·
1

𝛾� · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠(𝛼′)	)

	= 𝛾� · 𝑚G · 𝑐F ·
1

𝛾� · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠(𝛼′)	)

	= 	
𝑚G · 𝑐F

1 − 𝑤𝑐 · 𝑐𝑜𝑠(𝛼′)
 

 

ℎ · 𝑓F 		= ℎ · 𝑓′	 ·
1

𝛾� · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠(180° − 𝛼′)	)

	= 𝛾� · 𝑚G · 𝑐F ·
1

𝛾� · (	1 +
𝑤
𝑐 · 𝑐𝑜𝑠(𝛼′)	)

	= 	
𝑚G · 𝑐F

1 + 𝑤𝑐 · 𝑐𝑜𝑠(𝛼′)
 

 
Im letzten Abschnitt haben wir den Spezialfall von  𝛼 = 0°  behandelt. Dann ist  𝑐𝑜𝑠(𝛼) = 1  und wir erhalten die 
Resultate des letzten Abschnittes. 
 
Die Verwendung der 'halben Geschwindigkeit'  𝑤  erleichtert nicht nur die Rechnungen, es entstehen auch schöne oder 
einfache Ergebnisse ! 
 
Im System S sind die beiden Winkel  𝛼  und  𝛽  nach der Aberrationsformel [1-22.3] kleiner als 𝛼′  respektive  
180° − 𝛼′ : 

 

𝑡𝑎𝑛	 �
F
	= 	 (78�

(7��
	 · 𝑡𝑎𝑛	 �|

F
          und          𝑡𝑎𝑛	 �

F
	= 	 (78�

(7��
	 · 𝑡𝑎𝑛	 A}G°8�|

F
 

 
Die beiden 3er-Impulse der Quanten müssen ja den 3er-Impuls des einfallenden Positrons ergeben. 
 
  



B18    Paarvernichtung 4 
 
 
Wir sind nochmals in derselben Situation von B16. Nun sei aber ein Detektor so montiert, dass er nur Quanten registriert, 
die senkrecht zur Einfallsrichtung des Positrons wegfliegen: 
 

 
 
Gesucht sind die beiden Energien der Quanten sowie der Winkel 𝜑 , unter dem der zweite Quant enteilt. Wir arbeiten mit 
den folgenden Viererimpulsen: 
 

• 𝑃A = 𝛾+ · 𝑚G · (	𝑐	, 𝑣	, 0	, 0	)									der	Viererimpuls	des	einfallenden	Positrons	
	

• 𝑃F = 𝑚G · (	𝑐	, 0	, 0	, 0	)																der	Viererimpuls	des	ruhenden	Elektrons	
	

• 𝑃p = 	
�
7
· 𝑓A · (	1	, 0, −1	, 0	)									der	Viererimpuls	des	Quants,	der	in	den	Detektor	fliegt	

	
• 𝑃q = 	

�
7
· 𝑓F · (1	, 𝑐𝑜𝑠(𝜑)	, 𝑠𝑖𝑛(𝜑)	, 0	)									der	Viererimpuls	des	anderen	Quants	

	
Die Erhaltung des Viererimpulses bedeutet     𝑃A 	+ 	𝑃F 	= 	𝑃p 	+ 	𝑃q	 . Die ersten drei Komponenten liefern uns drei 
Gleichungen für die drei Unbekannten  𝑓A , 𝑓F  und  𝜑 : 
 

• 𝛾+ · 𝑚G · 𝑐	 + 	𝑚G · 𝑐		 = 	
�
7
· 𝑓A 	+ 	

�
7
· 𝑓F										

multipliziert	mit	𝑐		erhalten	wir	(nicht	überraschend)																		𝐸A 	+ 	𝐸F 	= 	𝐸p 	+ 	𝐸q	 (18.1)	
	

• 𝛾+ · 𝑚G · 𝑣	 + 	0		 = 		0	 + 	�
7
· 𝑓F · 𝑐𝑜𝑠(𝜑)	

multipliziert	mit	𝑐		erhalten	wir	diesmal																																									𝐸A ·
+
7
		= 	𝐸q · 𝑐𝑜𝑠(𝜑)						 (18.2)	

	
• 0		 = 		 �

7
· 𝑓F · (−1) 	+ 	

�
7
· 𝑓F · 𝑠𝑖𝑛(𝜑)			

auch	hier	multiplizieren	wir	mit		𝑐		und	erhalten																													𝐸p 	= 	𝐸q · 𝑠𝑖𝑛(𝜑)				 (18.3)	
 
 
Wir eliminieren zuerst den Winkel 𝜑 indem wir die Quadrate von (18.2) und (18.3) addieren: 
 
        𝐸AF ·

+6

76
		+ 	𝐸pF 	= 		 𝐸qF · 𝑠𝑖𝑛F(𝜑) 	+ 	𝑐𝑜𝑠F(𝜑) 	= 	𝐸qF	         oder         𝐸qF 	− 	𝐸pF 	= 		 𝐸AF ·

+6

76
	     (18.4) 

 
Nun multiplizieren wir (18.1) mit   𝐸q 	− 	𝐸p	 und erhalten 
 
𝐸A 	+ 	𝐸F · 𝐸q 	− 	𝐸p 	= 	 𝐸p 	+ 	𝐸q · 𝐸q 	− 	𝐸p 	= 	𝐸qF 	− 	𝐸pF 	= 		 𝐸AF ·

+6

76
		      (18.5) 



Wir dividieren (18.5) durch  𝐸A 	+ 	𝐸F   und erhalten               𝐸q 	− 	𝐸p 	= 		
i96	·	

�6

y6

i9	�	i6
		       (18.6) 

 
Aus (18.1) haben wir immer noch                                               	𝐸q 	+ 	𝐸p 	= 	𝐸A 	+ 	𝐸F     (18.7) 
 

Nun addieren wir (18.6) und (18.7)                                           	2 · 𝐸q 	= 	𝐸A 	+ 	𝐸F 	+ 	
i96	·	

�6

y6

i9	�	i6
	   (18.8) 

 
Mit einer Nebenrechnung drücken wir auch +

6

76
  durch die Energien 𝐸A und 𝐸F aus : 

 

                            1 − +6

76
	= 	 A

�6
	= 	 i6

6

i96
             , also              +

6

76
	= 1 −	 A

�6
	= 1 −	i6

6

i96
	= 	 i9

68	i6
6

i96
       (18.9) 

 
Setzen wir (18.9) in (18.8) ein erhalten wir 
 
                     2 · 𝐸q 	= 	𝐸A 	+ 	𝐸F 	+ 	

i96	
i9	�	i6

· i9
68	i6

6

i96
	= 𝐸A 	+ 	𝐸F 	+ 	𝐸A 	− 	𝐸F 	= 	 2 · 𝐸A                (18.10) 

 
Es gilt somit, zusammen mit (18.7)                                 𝐸q 	= 	𝐸A        und       		𝐸p 	= 	𝐸F        (18.11) 
 
Für den Winkel 𝜑 berechnen wir      

                                                     cos 𝜑 = 	 j9¡
j¢
	= 		 �·£¤·+

i¢/7
= 		 �·£¤·+

i9/7
	= �·£¤·+

�·£¤·7
		= 	 +

7
		= 1 −	i6

6

i96
                   (18.12) 

 
 
Damit haben wir die gesuchten Grössen alle durch die Anfangsenergien ausgedrückt. Es ist offensichtlich, dass die 
Lösungen (18.11) und (18.12) den Gleichungen (18.1) bis (18.3) genügen ! Wir notieren die Lösungen nochmals: 
 

• ℎ · 𝑓A 	= 	𝐸p 	= 	𝐸F 	= 	𝑚G · 𝑐F	
	

• ℎ · 𝑓F 	= 	𝐸q 	= 	𝐸A 	= 	 𝛾+ · 𝑚G · 𝑐F	
	

• cos 𝜑 = 	 +
7
		= 1 −	i6

6

i96
	= 	 1 − 	 A

�6
	

 
Aus den beiden Frequenzen (respektive Energien) der Quanten und dem Winkel  𝜑  kann man also die Energie (oder die 
Geschwindigkeit) des einfallenden Positrons bestimmen - und umgekehrt. 
  



B19    Paarerzeugung 
 
 
Aus einem hochenergetischen Quant allein kann kein Elektron-Positron-Paar entstehen. Für das Paar der Teilchen 
existiert ja ein Schwerpunktssystem, in welchem der 3er-Impuls null ist. Für das einfallenden Quantum gibt es sowas 
nicht. Es muss also noch ein weiteres Teilchen (in der Regel ein Atomkern) beteiligt sein, damit diese Paarerzeugung 
stattfinden kann. Das ist ein Glück für die Astronomen: Die Quanten können in der Leere des Alls nicht einfach spontan 
in ein Teilchenpaar zerfallen. Die meisten reisen daher unverändert über 'astronomische' Strecken. 
 
Wir denken im Ruhesystem des beteiligten Atomkerns und verwenden die folgenden Bezeichner: 
 

• 𝑃A = 	
�·�
7
· (	1	, 1	, 0	, 0	)						für	den	Viererimpuls	des	einfallenden	Quants	

	
• 𝑃F = 	 (	𝑀 · 𝑐	, 0	, 0	, 0	)					für	den	Viererimpuls	des	ruhenden	weiteren	Teilchens	mit	der	Ruhemasse		M	

	
• 𝑃p						für	den	Viererimpuls	des	Clusters	bestehend	aus	den	beiden	neuen	Teilchen	und	dem	weiteren		

										beteiligten	Teilchen	nach	der	Paarerzeugung	
	

Wir werden also nicht die Impulse der einzelnen Teilchen bestimmen, das ist ohne weitere Angaben gar nicht möglich. 
Die Erhaltung des Viererimpulses bedeutet 
 

𝑃A 	+ 	𝑃F 	= 	𝑃p 
 
Wir quadrieren diese Gleichung: 
 

𝑃A ∘ 𝑃A 	+ 2 · 𝑃A ∘ 𝑃F + 	𝑃F ∘ 𝑃F 	= 	𝑃p ∘ 𝑃p                                                    (19.1) 
 

 
𝑃A ∘ 𝑃A  ist null,  𝑃F ∘ 𝑃F  hat den Wert  𝑀 · 𝑐 F  und bei 𝑃A ∘ 𝑃F  bleibt nur der zeitliche Anteil  ℎ · 𝑓 · 𝑀  übrig.  
Das Quadrat des Viererimpulses des Clusters berechnen wir in seinem Ruhesystem. Dort ist 
 
              𝑃p′ = 		 𝑀 + 2 · 𝑚G · 𝑐	, 0	, 0	, 0 	        und damit        𝑃p ∘ 𝑃p 	= 	𝑃p′ ∘ 𝑃p′	 = 	 (𝑀 + 2 · 𝑚G)F · 𝑐F .  
 
Eingesetzt in (19.1) erhalten wir 
 

0	 + 	2 · 	ℎ · 𝑓 · 𝑀	 + 	 𝑀 · 𝑐 F 	= (𝑀 + 2 · 𝑚G)F · 𝑐F                 
 

Ausmultipliziert 
 

2 · 	ℎ · 𝑓 · 𝑀	 + 	𝑀F · 𝑐F 	= 	𝑀F · 𝑐F 	+ 	4 · 𝑀 · 𝑚G · 𝑐F 	+ 	4 · 𝑚G
F · 𝑐F 

 
und vereinfacht 

ℎ · 𝑓	 = 	2 · 𝑚G · 𝑐F 	+ 	2 · 𝑚G
F · 𝑐F/𝑀	 = 	2 · 𝑚G · 𝑐F · 	1 + £¤

§
                                (19.2) 

 
Man sieht auch am Ergebnis, dass ohne ein weiteres Teilchen, also für  𝑀 = 0 , der benötigte Energieaufwand unendlich 
gross wäre. Ist das weitere beteiligte Teilchen kein Atomkern, sondern auch nur ein Elektron, so muss die einfallende 
Energie doppelt so gross sein wie die Ruheenergie der erzeugten Teilchen. 
 
 
 
  



B20    Der vollkommen inelastische Stoss 
 
 
Zwei Teilchen mit den Ruhemassen  𝑚¨  und  𝑚©  bewegen sich im Laborsystem S mit den Geschwindigkeiten 
 𝑢¨ = 	 (	𝑢¨	, 0	, 0	)  und  𝑢© = 	 (	𝑢©	, 0	, 0	) in der x-Richtung. Sie stossen vollkommen inelastisch zusammen, bilden 
also nach der Kollision ein einziges Teilchen. Wie gross ist die Ruhemasse  𝑚7  des entstandenen Teilchens, und mit 
welcher Geschwindigkeit  𝑢7 = 	 (	𝑢7	, 0	, 0	)  bewegt sich dieses im Laborsystem ? 
 
Die Erhaltung des Viererimpulses bedeutet   𝑃 	+ 	𝑃© 	= 	𝑃7   . Wir quadrieren und erhalten 
 

𝑃 ∘ 𝑃 + 2 · 𝑃 ∘ 𝑃© + 𝑃© ∘ 𝑃© 	= 	𝑃7 ∘ 𝑃7 
 
Die Quadrate berechnen wir natürlich im jeweiligen Ruhesystem und erhalten 
 

𝑚¨
F · 𝑐F 	+ 	2 · 𝛾 · 𝑚¨ · (	𝑐	, 	𝑢¨	, 0	, 0	) ∘ 𝛾© · 𝑚© · (	𝑐	, 	𝑢©	, 0	, 0	) 	+ 𝑚©

F · 𝑐F 	= 	𝑚7
F · 𝑐F      

 
Wir dividieren durch 𝑐F und berechnen das Skalarprodukt: 

 

𝑚¨
F 	+ 	2 · 𝛾 · 𝑚¨ · 𝛾© · 𝑚© ·

(𝑐F − 𝑢¨ · 𝑢©)
𝑐F

	+ 𝑚©
F 	= 	𝑚7

F	 
Etwas umgestellt: 

𝑚7
F 	= 	𝑚¨

F 	+ 	𝑚©
F 	+ 	2 · 𝑚¨ · 𝑚© · 𝛾 · 𝛾© · 	 1 −

𝑢¨ · 𝑢©
𝑐F

	 

 
Für den Vergleich mit 

𝑚¨ + 𝑚©
F 	= 	𝑚¨

F 	+ 	𝑚©
F 	+ 	2 · 𝑚¨ · 𝑚© 

 
 untersuchen noch den Term    

  𝑘	 = 	 𝛾 · 𝛾© · 	 1 −
W«·W¬
76

	= 	 1 − W«6

76

896 · 1 − W¬6

76

896 · 1 − W«·W¬
76

 
 

Haben  𝑢¨ und 𝑢©  unterschiedliche Vorzeichen, stossen die beiden Teilchen also gegenläufig aufeinander, so sind alle 
drei Faktoren grösser als 1 , und  𝑚7  ist entsprechend grösser als  𝑚¨ + 𝑚© . Ist eine der beiden Geschwindigkeiten null 
so verschwindet der dritte Faktor, einer der ersten beiden wird 1 und der restliche ist wieder grösser als 1 . Mit einigem 
Aufwand kann man zeigen, dass  𝑘 auch im letzten Fall, wo   𝑢¨ und 𝑢©  dasselbe Vorzeichen haben, grösser ist als 1 . 
Die Ruhemasse des entstandenen Teilchens ist also immer grösser als die Summe der Ruhemassen der Ausgangsteilchen, 
es wird immer ein Teil der kinetischen Energie in Ruheenergie umgewandelt. 
 
Wir berechnen noch die Geschwindigkeit  𝑢7  des entstandenen Teilchens. Der Energiesatz, also die zeitliche 
Komponente der Erhaltung des Viererimpulses, liefert 
 

𝛾 · 𝑚¨ · 𝑐F 	+ 	𝛾© · 𝑚© · 𝑐F 	= 	 𝛾7 · 𝑚7 · 𝑐F 
 
Der Impulssatz, also die räumliche Komponente der Erhaltung des Viererimpulses, liefert 
 

𝛾 · 𝑚¨ · 𝑢¨ 	+ 𝛾© · 𝑚© · 	𝑢© 	= 	 𝛾7 · 𝑚7 · 𝑢7 
 
Wir dividieren die Energiebilanz durch 𝑐F und erhalten einen Term für  𝛾7 · 𝑚7 , den wir in die Impulsgleichung 
einsetzen: 
 

	𝑢7 	= 	
𝛾 · 𝑚¨ · 	𝑢¨ 	+ 	𝛾© · 𝑚© · 	𝑢©

𝛾 · 𝑚¨ 	+ 	𝛾© · 𝑚©
 

 
	𝑢7  ist die Geschwindigkeit des Schwerpunktes des Systems vor und nach der Kollision. 
 
  

(20.1) 

(20.2) 



B21    Der vollkommen elastische Stoss 1 
 
 
Ein Teilchen der Ruhemasse  𝑚  stösst mit der Geschwindigkeit 𝑢 = 𝑢K gegen ein ruhendes Teilchen der Masse 𝑀 . Der 
Stoss braucht nicht zentral zu sein : 
 

 
 
Gegeben oder gemessen seien die Geschwindigkeit 𝑢 des stossenden Teilchens, das Verhältnis 𝑚/𝑀 der Ruhemassen 
und der Winkel 𝛼 , unter welchem sich das gestossene Teilchen von der x-Achse wegbewegt. Berechnet werden die 
beiden Geschwindigkeiten nach dem Stoss sowie der Winkel 𝛽. 
 
Wir starten mit dem Erhaltungssatz für den Viererimpuls:    𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑆     mit                                                (21.1) 
 
𝑃 = 𝛾W · 𝑚 · (𝑐, 𝑢, 0,0)  das schnelle Teilchen vor dem Stoss 
𝑄 = 	𝑀 · (𝑐, 0,0,0)  das ruhende Teilchen vor dem Stoss 
𝑅 = 𝛾� · 𝑀 · (𝑐, 𝑤 · 𝑐𝑜𝑠(𝛼), 𝑤 · 𝑠𝑖𝑛(𝛼),0)  das gestossene Teilchen nach dem Stoss 
𝑆 = 𝛾� · 𝑚 · (𝑐, 𝑟 · 𝑐𝑜𝑠(𝛼), 𝑟 · 𝑠𝑖𝑛(𝛼),0)  das stossende Teilchen nach dem Stoss 
 
Wir quadrieren (21.1) und erhalten         𝑃 ∘ 𝑃	 + 	2 · 𝑃 ∘ 𝑄	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑅 ∘ 𝑆	 + 	𝑆 ∘ 𝑆                        (21.2) 
Wegen 𝑃 ∘ 𝑃 = 𝑆 ∘ 𝑆  und  𝑄 ∘ 𝑄 = 𝑅 ∘ 𝑅 folgt daraus  𝑃 ∘ 𝑄 = 	𝑅 ∘ 𝑆 . Nun multiplizieren wir (21.1) mit 𝑅 : 
 
                                                     𝑃 ∘ 𝑅	 + 𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑅	 + 	𝑆 ∘ 𝑅 = 𝑅 ∘ 𝑅	 + 𝑃 ∘ 𝑄                                               (21.3) 

 
Damit ist 𝑆 eliminiert und wir können die Geschwindigkeit 𝑤 berechnen. Es ist 
 
𝑃 ∘ 𝑅 = 𝛾W · 𝛾� · 𝑚 · 𝑀 · (𝑐F − 𝑢 · 𝑤 · 𝑐𝑜𝑠(𝛼)) ,  𝑄 ∘ 𝑅 = 𝛾� · 𝑀F·𝑐F ,  𝑅 ∘ 𝑅 = 𝑀F·𝑐F  und   𝑃 ∘ 𝑄 = 𝛾W · 𝑚 · 𝑀 · 𝑐F 
 
Setzt man diese Terme in (21.3) ein so erhält man nach einigen Umformungen aus einer linearen Gleichung 
 

𝑤 =
2 · 1 + 𝑀𝑚 · 1𝛾W

· 𝑢 · 𝑐𝑜𝑠(𝛼)

1 + 𝑀𝑚 · 1𝛾W

F
+ 𝑢F · 𝑐𝑜𝑠F(𝛼)

 

 
 
Aus  𝑤  und  𝛼  erhalten wir dann    𝛾� = 1 − 𝑤F 896   ,   𝑤K = 𝑤 · 𝑐𝑜𝑠(𝛼)   und   𝑤v = 𝑤 · 𝑠𝑖𝑛(𝛼)                       (21.5) 
 
  

(21.4) 



Nun benützen wir die erste Zeile von (21.1), also den Energiesatz:    𝛾W · 𝑚 · 𝑐	 + 𝑀 · 𝑐	 = 	 𝛾� · 𝑀 · 𝑐	 + 𝛾� · 𝑚 · 𝑐	 
Nach 𝛾� aufgelöst : 
 

𝛾� = 𝛾W +
𝑀
𝑚
−
𝑀
𝑚
· 𝛾�									und	daraus								𝑟 = 	 1 −

1
𝛾�F

	 

 
Aus der Impulserhaltung, also der zweiten und der dritten Zeile von (21.1), erhalten wir noch die beiden Komponenten der 
Geschwindigkeit 𝑟 und den Winkel  𝛽 : 
 

𝛾W · 𝑚 · 𝑢	 = 	 𝛾� · 𝑚 · 𝑟K + 𝛾� · 𝑀 · 𝑤K 				→ 			 𝑟K = 𝛾W · 𝑢 − 𝛾� ·
𝑀
𝑚
· 𝑤K /𝛾� 

 

0 = 	 𝛾� · 𝑚 · 𝑟v + 𝛾� · 𝑀 · 𝑤v 								→ 					 𝑟v = −𝛾� ·
𝑀
𝑚
· 𝑤v /𝛾� 

 
Da wir 𝑤v positiv gewählt haben ist der Wert von 𝑟v immer negativ. Der Wert von 𝑟K kann beide Vorzeichen annehmen. 
𝛽  bestimmen wir daher durch 
 

𝛽 = 𝑠𝑖𝑛8A(𝑟K/𝑟)                                                                          (21.8)                
 
 
Zu diesen Rechnungen habe ich ein GeoGebra-Programm geschrieben. Dort können die Werte von 𝑢 , 𝑀/𝑚  und  𝛼  mit 
Schiebereglern eingestellt werden. Das Programm zeigt dann die beiden Teilchen nach dem Stoss und gibt die Werte der 
Geschwindigkeiten und der beiden Winkel an. Der Link zu diesem kleinen Programm ist 
https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss_1.ggb 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(21.6) 

(21.7) 



B22    Der vollkommen elastische Stoss 2 
 
 
Wir sind in derselben Situation wie in B21, man beachte die dortige Zeichnung. Diesmal betrachten wir das Geschehen 
aber im Schwerpunktsystem S' der beiden Teilchen : 
 

 
 
𝑣  ist die Geschwindigkeit von S' gegenüber S. Das in S ruhende Teilchen M bewegt sich in S' mit −𝑣 in der x-Richtung. 
Der Gesamtimpuls ist in S' vor dem Stoss null und muss daher auch nach dem Stoss null sein. Die beiden Teilchen 
bewegen sich also in entgegengesetzten Richtungen auseinander. Da auch die Gesamtenergie erhalten bleibt muss gelten 
 

|𝑤′| 	= 	 | − 𝑣|								und								|	𝑟′| = 	 |𝑢′|                                                                (22.1) 
 

Die Relativgeschwindigkeit  𝑣  von S' gegenüber S berechnen wir mit der Formel [1 - 7.1] : 
 

𝑣 = 	
𝑝`c` · 𝑐F

𝐸`c`
	= 	

𝛾W · 𝑚 · 𝑢 · 𝑐F

𝛾W · 𝑚 · 𝑐F + 𝑀 · 𝑐F
	= 	

𝛾W
𝛾W + 𝑀/𝑚

· 𝑢 

 
Damit ist auch 𝛾+ bekannt. 
 
Für die Berechnung der Geschwindigkeiten nach dem Stoss brauchen wir nebst  𝑢  und  𝑀/𝑚  noch den Winkel 
𝜑′ , unter welchem sich der stossende Körper nach dem Stoss von der positiven x-Achse entfernt. 𝜑′ kann stumpf sein 
falls  𝑚	 < 	𝑀  gilt. 
 
Nach dem Additionstheorem für parallele Geschwindigkeiten ist 
 

𝑢′ = 	
𝑢 − 𝑣

1 + 𝑢 · 𝑣/𝑐F
 

 
Wegen (22.1) gilt            𝑟′ = 𝑢′				,				𝑟K′	 = 	𝑢′ · 𝑐𝑜𝑠(𝜑′)								und				𝑟v′	 = 	−𝑢′ · 𝑠𝑖𝑛(𝜑′)		                                           (22.4) 
 
und                                  𝑤′ = 𝑣			, 	𝑤K′	 = 	−𝑣 · 𝑐𝑜𝑠(𝜑′)					und					𝑤v′	 = 	𝑣 · 𝑠𝑖𝑛(𝜑′)					                                           (22.5) 
 
Diese Geschwindigkeiten rechnen wir jetzt mithilfe der Formeln [1 - 22.1] und [1 - 22.2] um ins System S. 
 
 

(22.2) 

(22.3) 



Es ist 
 

𝑟K = 	
𝑟K′ + 𝑣

1 + 𝑣 · 𝑟K′/𝑐F
					,					𝑟v = 	

𝑟v′
𝛾+ · 1 + 𝑣 · 𝑟K′/𝑐F

							und						𝑟 = 𝑟KF + 𝑟vF	 

 
und genauso 
 

𝑤K = 	
𝑤K′ + 𝑣

1 + 𝑣 · 𝑤K′/𝑐F
					,					𝑤v = 	

𝑤v′
𝛾+ · 1 + 𝑣 · 𝑤K′/𝑐F

					und						𝑤 = 𝑤KF + 𝑤vF	 

 
 
Es bleiben noch die Winkel 𝛼 und 𝛽 zu berechnen, unter denen sich die beiden Körper in S von der x-Achse entfernen. 
Dazu gibt es viele Möglichkeiten, zum Beispiel so: 
 

𝛼 = 𝑡𝑎𝑛8A(𝑤v/𝑤K) 	= 	 𝑐𝑜𝑠8A(𝑤K/𝑤)						𝑢𝑛𝑑					𝛽 = 𝑐𝑜𝑠8A(𝑟K/𝑟)	                               (22.7) 
 
Auch zu dieser Variante der Berechnung eines vollkommen elastischen Stosses in der SRT habe ich zur Kontrolle ein 
kleines GeoGebra-Programm geschrieben. 𝑢 , 𝑀/𝑚 und 𝜑′ lassen sich mit Schiebereglern einstellen, und das Programm 
zeigt dann die Geschwindigkeiten nach dem Stoss sowie die Winkel 𝛼 und 𝛽 an. Falls  𝑚	 > 	𝑀  gilt kann der Winkel 𝜑′ 
nicht grösser sein als 90°. 
Der Link zu diesem kleinen Programm ist  https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss_2.ggb 
  

(22.6) 

(22.6) 



B23    Die Compton-Streuformel 
 
 
Wir betrachten den elastischen Stoss eines Photons gegen ein ruhendes freies Elektron: 
 

 
 
Vor dem Stoss haben wir die Viererimpulse   𝑃 = �·�

7
· (	1	, 1	, 0	, 0	)  und  𝑄 = 𝑚G · (	𝑐	, 0	, 0	, 0	)  

 
Nach dem Stoss haben wir   𝑅 = �·�´

7
· (	1	, 𝑐𝑜𝑠	𝜑	, 𝑠𝑖𝑛	𝜑	, 0	)   und    𝑄′ = 	 𝛾+ · 𝑚G · (	𝑐	, 𝑢	)    

 
Ausgangspunkt ist der Erhaltungssatz für den Viererimpuls:                    𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑄′     (23.1) 
 
Er wird quadriert                                  𝑃 ∘ 𝑃	 + 	2 · 𝑄 ∘ 𝑃	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑄′ ∘ 𝑅	 + 	𝑄′ ∘ 𝑄′	   
 
somit             0	 + 	2 · 𝑄 ∘ 𝑃	 + 	𝑄 ∘ 𝑄	 = 	0	 + 	2 · 𝑄′ ∘ 𝑅	 + 	𝑄 ∘ 𝑄           und          𝑄 ∘ 𝑃	 = 	𝑄′ ∘ 𝑅 (23.2) 
 
Wir multiplizieren (23.1) mit 𝑃′ und benützen (23.2) :      𝑃 ∘ 𝑅	 + 	𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑅	 + 	𝑄′ ∘ 𝑅	 = 	0	 + 	𝑄 ∘ 𝑃  (23.3) 
  
𝑄′ ist eliminiert ! Wir berechnen die übriggebliebenen drei Skalarprodukte von (23.3) : 
 

• 𝑃 ∘ 𝑅	 = 	 �·�
7
· �·�

´

7
· (1 − 𝑐𝑜𝑠	𝜑) 	= 		 �

µ
· �
µ´
· (1 − 𝑐𝑜𝑠	𝜑) 	= 	 A

76
· 𝐸 · 𝐸′ · (1 − 𝑐𝑜𝑠	𝜑)			

	

• 𝑄 ∘ 𝑅	 = 	𝑚G · 𝑐 ·
�·�´

7
	= 	𝑚G · 𝑐 ·

�
µ´
	= 	 A

76
· 𝑚G · 𝑐F · 𝐸′					

	
• 𝑄 ∘ 𝑃	 = 	𝑚G · 𝑐 ·

�·�
7
		= 	𝑚G · 𝑐 ·

�
µ
	= 		 A

76
· 𝑚G · 𝑐F · 𝐸								

	
Eingesetzt in (23.3)                                                      �

µ
· �
µ´
· (1 − 𝑐𝑜𝑠	𝜑) 	+ 	𝑚G · 𝑐 ·

�
µ´
	= 	𝑚G · 𝑐 ·

�
µ
	            

 
und multipliziert mit   µ·µ

´

�
                                          ℎ · (1 − 𝑐𝑜𝑠	𝜑) 	+ 	𝑚G · 𝑐 · 𝜆	 = 	𝑚G · 𝑐 · 𝜆′	  

 
und noch etwas umgestellt                                             ℎ · (1 − 𝑐𝑜𝑠	𝜑) 	= 	𝑚G · 𝑐 · 𝜆′ − 𝜆        
 
 
Damit haben wir die Streuformel von Compton gefunden:                 𝜆′ − 𝜆	 = 	 �

£¤·7
· (1 − 𝑐𝑜𝑠	𝜑) (23.4) 

 
�

£¤·7
	≈ 2.426	Pikometer ist die sogenannte Compton-Wellenlänge des Elektrons. 

 
Auf der folgenden Seite bestimmen wir noch die Energie  𝐸′ = ℎ · 𝑓′  des gestreuten Photons aus der Energie  𝐸 = ℎ · 𝑓 
des einfallenden Photons und dem Streuwinkel. 
 
 
  



Wir schreiben (23.3) nochmals und verwenden diesmal die Energieterme für die Skalarprodukte: 
 
                                            A

76
· 𝐸 · 𝐸′ · (1 − 𝑐𝑜𝑠	𝜑) 	+ 		 A

76
· 𝑚G · 𝑐F · 𝐸′	 = 		

A
76
· 𝑚G · 𝑐F · 𝐸          (23.5) 

 
Multipliziert mit 𝑐F und etwas umgestellt 
 
                                                        𝐸′ · 𝐸 · (1 − 𝑐𝑜𝑠	𝜑) 	+ 		𝑚G · 𝑐F 	= 	𝑚G · 𝑐F · 𝐸       
 
und nach  𝐸′  aufgelöst 
 

𝐸′		 = 	
𝑚G · 𝑐F · 𝐸

𝐸 · (1 − 𝑐𝑜𝑠	𝜑) 	+ 		𝑚G · 𝑐F
	= 	𝐸 ·

1

1	 + 	 𝐸
𝑚G · 𝑐F

· (1 − 𝑐𝑜𝑠	𝜑)	
 

 
oder        
 

𝑓′		 = 	
𝑚G · 𝑐F · ℎ · 𝑓

ℎ · 𝑓 · (1 − 𝑐𝑜𝑠	𝜑) 	+ 		𝑚G · 𝑐F
	= 	𝑓 ·

1

1	 + 	 ℎ · 𝑓𝑚G · 𝑐F
· (1 − 𝑐𝑜𝑠	𝜑)	

 

 
  

£¤·76

�
	≈ 	1.236 · 10FG	Hz   müsste dann die Compton-Frequenz des Elektrons genannt werden. 

 
(23.4) und (23.6) zeigen, dass die Energie des gestreuten Photons immer kleiner ist als die Energie des einfallenden 
Photons, wie es ja nach dem Energiesatz sowieso sein sein muss. (23.6) zeigt noch 
 

𝐸′		 ≥ 		𝐸 ·
1

1	 + 	 2 · 𝐸𝑚G · 𝑐F
	
 

 
 
 

 
 
Eine exakte Rechnung ohne Vierervektoren ist hier viel aufwendiger. Man vergleiche zum Beispiel mit 
https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_03.pdf  

(23.6) 

(23.7) 



B24    Der inverse Compton-Effekt 
 
 
Ein Photon kann viel Energie gewinnen, wenn es frontal und elastisch gegen ein sehr schnelles Elektron stösst: 
 

 
 

Wir brauchen die folgenden Viererimpulse : 
 

• 𝑃	 = 	 �·�
7
· (	1	, −1	, 0	, 0	)													 für	das	Photon	vor	dem	Stoss	

	
• 𝑄	 = 	 𝛾+ · 𝑚G · (	𝑐	, 𝑣	, 0	, 0	)								 für	das	Elektron	vor	dem	Stoss	

	

• 𝑅	 = 	 �·�
´

7
· (	1	, 1	, 0	, 0	)															 für	das	Photon	nach	dem	Stoss	

	
• 𝑆	 = 	 𝛾+| · 𝑚G · (	𝑐	, 𝑣′	, 0	, 0	)							 für	das	Elektron	nach	dem	Stoss	

 
Wir starten wieder mit der Erhaltung des Viererimpulses                    𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑆       (24.1) 
 
quadriert                                                  𝑃 ∘ 𝑃	 + 	2 · 𝑃 ∘ 𝑄	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑅 ∘ 𝑆	 + 	𝑆 ∘ 𝑆    
 
ausgewertet                                             0	 + 	2 · 𝑃 ∘ 𝑄	 + 	𝑚G

F · 𝑐F 	= 	0	 + 	2 · 𝑅 ∘ 𝑆	 + 	𝑚G
F · 𝑐F	 

 
also gilt                                                                             𝑃 ∘ 𝑄	 = 	𝑅 ∘ 𝑆        (24.2) 
 
Nun multiplizieren wir (24.1) mit 𝑅             𝑃 ∘ 𝑅	 + 	𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑅	 + 	𝑆 ∘ 𝑅	 = 	0	 + 	𝑃 ∘ 𝑄      
 
und erhalten                                                             𝑃 ∘ 𝑅	 + 	𝑄 ∘ 𝑅	 = 		𝑃 ∘ 𝑄 (24.3) 
 
S  ist eliminiert. Nun bestimmen wir die drei Skalarprodukte: 
 

• 𝑃 ∘ 𝑅	 = 	 �·�
7
· �·�

´

7
· (1 + 1 − 0 − 0) 	= 	2 · �·�

7
· �·�

´

7
	

	

• 𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑄	 = 	 �·�
´

7
· 𝛾+ · 𝑚G · (	𝑐 − 𝑣	)	

	
• 𝑃 ∘ 𝑄	 = 		 �·�

7
· 𝛾+ · 𝑚G · (	𝑐 + 𝑣	)	

 
eingesetzt in (24.3) :                       2 · �·�

7
· �·�

´

7
	+ 	�·�

´

7
· 𝛾+ · 𝑚G · (	𝑐 − 𝑣	) 	= 	

�·�
7
· 𝛾+ · 𝑚G · (	𝑐 + 𝑣	)	 

 
durch  𝛾+ · 𝑚G                             F

��·£¤·76
· ℎ · 𝑓 · ℎ · 𝑓| + 	ℎ · 𝑓| · 1 − +

7
	= 	ℎ · 𝑓 · 1 + +

7
	≈ 	2 · ℎ · 𝑓   (24.4)  

 
Wir machen einen sehr kleinen Fehler, wenn wir für  𝑣 ≈ 𝑐  die Klammer 1 + +

7
  durch die Zahl 2 ersetzen ! 

 
Dividiert durch 2                                       ℎ · 𝑓| · 	 A

��·£¤·76
· ℎ · 𝑓	 + A

F
· 1 − +

7
	 = 	ℎ · 𝑓 

 



												ℎ · 𝑓| = 	
	ℎ · 𝑓

1
𝛾+ · 𝑚G · 𝑐F

· ℎ · 𝑓	 + 12 · 1 − 𝑣𝑐
	= 	 𝛾+ · 𝑚G · 𝑐F ·

1

1	 + 	 𝑐 − 𝑣2 · 𝑐 · 𝛾+ · 𝑚G · 𝑐F
ℎ · 𝑓

	=	

	

																							= 	 𝛾+ · 𝑚G · 𝑐F ·
1

1 +	 𝑐 − 𝑣 · 𝛾+ · 𝑚G · 𝜆
2 · ℎ

 

 
 
Für  𝑣 ≈ 𝑐  gilt  *)  in sehr guter Näherung   𝛾+ · 𝑐 − 𝑣 ≈ 𝑐/(2 · 𝛾+) . Damit vereinfacht sich (24.5) zu 
  

𝐸| = ℎ · 𝑓| 	≈ 	 	𝛾+ · 𝑚G · 𝑐F ·
1

1 +	𝑐 · 𝑚G · 𝜆
4 · 	𝛾+ · ℎ

 

 
 
 
Nun schätzen wir den zweiten Summanden im Nenner ab für 	𝛾+ 	= 	10′000 . Für 𝜆  setzen wir 500 nm ein : 
 

	
𝑐 · 𝑚G · 𝜆
4 · 	𝛾+ · ℎ

	≈ 	
3 · 10} · 9.1 · 108pA · 5 · 108¿

8 · 10À · 6.6 · 108pq
	≈ 	0.517 

 
Dann ist also 
 
                                      𝐸′ ≈ 	 A

A.ÀA¿
· 10′000 · 𝑚G · 𝑐F 	≈ 6′592 · 𝑚G · 𝑐F 	≈ 6′592 · 511	keV	 ≈ 	3.37	MeV  

 
Je grösser die Energie des stossenden Elektrons ist umso grösser ist der Anteil, der dem gestossenen Quant zugute 
kommt. Auf diese Weise können Gammaquanten mit extrem hohen Energien erzeugt werden. 
 
 

	𝛾+ 𝐸′	/	(	𝑚G · 𝑐F	) 
10 0.019 

100 5.27 
1'000 162 

10'000 6592 
100'000 95'084 

 
 
 
 
 
 
*)      

𝛾+ · 𝑐 − 𝑣 =
1

1 − 𝑣𝑐

·
1

1 + 𝑣𝑐

· 𝑐 · 1 −
𝑣
𝑐
	= 	𝑐 ·

1 − 𝑣𝑐

1 + 𝑣𝑐

		≈ 	𝑐 ·
1 − 𝑣𝑐
2

	= 𝑐 ·
𝑐 − 𝑣
2

 

 
𝑐

2 · 𝛾+
	≈ 	

𝑐 − 𝑣
𝑐 − 𝑣

	= 	 𝑐 − 𝑣 

 
𝑐 − 𝑣	 ≈ 	

𝑐
2 · 𝛾+F

													und										𝛾+ · 𝑐 − 𝑣 ≈ 	
𝑐

2 · 𝛾+
	 

  

(24.5) 

(24.6) 



B25    Bremsstrahlung 
 
 
Ein Elektron durchläuft in einer Vakuum-Röhre eine Beschleunigungsspannung von einigen zehn Kilovolt und prallt 
dann auf ein Anodenmaterial auf. Dabei gibt es einen beträchtlichen Teil seiner Energie als Röntgenquant ab. Vor dem 
Aufprall haben wir ein schnelles Elektron und ein ruhendes Atom in der Anode. Nach dem Aufprall haben wir ein 
angestossenes Atom samt Elektron (wir behandeln das als einen Cluster) sowie den Röntgenquant: 

 
Die folgenden Vierervektoren gehen in die Rechnung ein: 
 
• 𝑃	 = 	 𝛾+ · 𝑚G · (	𝑐	, 𝑣	, 0	, 0	)									 das	Elektron	vor	dem	Aufprall	
	
• 𝑄 = 	1 · 𝑀 · (	𝑐	, 0	, 0	, 0	)													 das	Atom	vor	dem	Stoss	
	
• 𝑅	 = 	 𝛾W · 𝑀 + 𝑚G · (	𝑐	, 𝑢K	, 𝑢v	, 0	)								Atom	und	Elektron		
	 	 																																																											nach	dem	Stoss		
• 𝑆	 = 	 �·�

7
· (	1	, 0	, 1	, 0	)											 der	Röntgenquant	

 
Wir starten wieder mit der Erhaltung des Viererimpulses:  
     
                                 𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑆      (25.1) 
quadriert: 
 
       𝑃 ∘ 𝑃	 + 	2 · 𝑃 ∘ 𝑄	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑅 ∘ 𝑆	 + 	𝑆 ∘ 𝑆 
 

 
Wir berechnen die 6 Skalarprodukte:  𝑃 ∘ 𝑃 = 𝑚G

F · 𝑐F  ;  𝑄 ∘ 𝑄 = 	𝑀F · 𝑐F  ;  𝑅 ∘ 𝑅 = 𝑀 +𝑚G
F · 𝑐F  ;  𝑆 ∘ 𝑆 = 0  ; 

𝑃 ∘ 𝑄 = 	𝛾+ · 𝑚G · 𝑀 · 𝑐F  ;  𝑅 ∘ 𝑆 = 𝛾W · 𝑀 + 𝑚G · �·�
7
· (	𝑐 − 𝑢v)	 . 

 
Somit      𝑚G

F · 𝑐F + 2 · 𝛾+ · 𝑚G · 𝑀 · 𝑐F + 𝑀F · 𝑐F = 𝑀F + 2 · 𝑀 · 𝑚G + 𝑚G
F 	 · 𝑐F + 2 · 𝛾W · 𝑀 + 𝑚G · �·�

7
· (	𝑐 − 𝑢v)  

 
vereinfacht                      2 · 𝛾+ · 𝑚G · 𝑀 · 𝑐F 	= 	2 · 𝑀 · 𝑚G · 𝑐F + 2 · 𝛾W · 𝑀 + 𝑚G · ℎ · 𝑓 · 1 − WÅ

7
 

  
weiter                                      𝛾+ − 1 · 𝑚G · 𝑀 · 𝑐F 	= 	 𝛾W · 𝑀 + 𝑚G · ℎ · 𝑓 · 1 − WÅ

7
 

 
und                                              𝛾+ − 1 · 𝑚G · 𝑐F ·

§	
�x· §�£¤

· 7
78WÅ

	= 	ℎ · 𝑓      (25.2) 

 
Für Molybdän als Anodenmaterial gilt zum Beispiel        §	

§�£¤
	≈ 	 A¿ÀGGG

A¿ÀGGA
  . Der Faktor  §	

§�£¤
 ist daher nur wenig kleiner 

als 1.  
Es ist zudem auch   𝑢v < 𝑢 ≪ 	𝑐 ,  𝛾W	 und der Faktor  	𝑐/(𝑐 − 𝑢v)  sind daher beide nur ganz wenig grösser als 1. Je 
weniger Energie das Atom aufnimmt, desto näher liegen diese beiden Faktoren bei 1. Als Obergrenze für die Energie des 
Röntgenquants erhalten wir somit 

																							ℎ · 𝑓	 ≤ 	 𝛾+ − 1 · 𝑚G · 𝑐F 	= 	𝐸�s� 
 
Das hätten wir natürlich auch gleich sagen können: Der Röntgenquant kriegt maximal die ganze kinetische Energie des 
Elektrons ! Es gilt also  

ℎ · 𝑓£¨K 	= 	𝐸�s� 	= 	𝑈 · 𝑒 
 
In der Kristallstrukturbestimmung arbeitet man mit Beschleunigungsspannungen von 20 bis 40 Kilovolt, was zu 
Wellenlängen im Bereich von einem ganzen bis zu einem halben Angström führt. 
 
  

(25.3) 



C26    Die Lorentzkraft als Vierervektor 
 
 
Maxwells Theorie des Elektromagnetismus ist ja uneingeschränkt kompatibel mit der SRT. Daher darf man auch 
erwarten, das das Kraftgesetz von Lorentz weiterhin gilt:   𝑓 = 		𝑞 · 𝐸 	+ 	𝑢	×	𝐵  . Dieses Kraftgesetz ist ja eigentlich 
eine Definition für die Feldvektoren des elektrischen und des magnetischen Feldes: Die gesamte Kraftwirkung auf ein 
geladenes Teilchen setzt sich zusammen aus der Coulombkraft und der Lorentzkraft. 
 
Für die entsprechende Viererkraft gilt damit 
 

           𝐾	 = 	𝛾 · (	A
7
· UiËÌË

U`
	,			Uj

U`
	) = 	𝛾 · (	A

7
· 𝑓 · 𝑢	,			𝑓	) = 		𝛾 · 𝑞 · (	A

7
· 𝐸 · 𝑢,			𝐸 	+ 	𝑢	×	𝐵	)  

 
Das Magnetfeld trägt nichts dazu bei, die Energie des geladenen Teilchens zu verändern: Da  𝑢	×	𝐵  immer senkrecht 
steht auf  𝑢  gilt    𝑓 · 𝑢 	= 𝑞 · 𝐸 	+ 	𝑢	×	𝐵 · 𝑢 	= 	𝑞 · 𝐸 · 𝑢	 . 
 
𝐾	 kann als Produkt einer Matrix mit dem Vierervektor  𝑈  geschrieben werden: 
 

										𝐾	 =
𝑞
𝑐
·

0 𝐸K 𝐸v 𝐸w
𝐸K 0 𝑐 · 𝐵w −𝑐 · 𝐵v
𝐸v −𝑐 · 𝐵w 0 𝑐 · 𝐵K
𝐸w 𝑐 · 𝐵v −𝑐 · 𝐵K 0

· 𝛾 ·

𝑐
𝑢K
𝑢v
𝑢w

 

 
Diese Matrix erhält die Bezeichnung  𝐹	(wie Faraday), sie beschreibt in der SRT das elektromagnetische Feld. Das 
Kraftgesetz von Lorentz schreibt sich damit als 

															𝐾	 =
𝑞
𝑐
· 𝐹 · 𝑈 

 
𝐾 und  𝑈  sind Vierervektoren. In einem anderen Bezugssystem S' haben sie eine andere Gestalt. Diese ist nach der 
Definition im Abschnitt A1 gegeben durch  𝐾′ = 𝐿 · 𝐾   und   𝑈′ = 𝐿 · 𝑈 . Es ist nun nicht schwierig, die Matrix  𝐹′  zu 
bestimmen, für die gilt 

		𝐾′	 =
𝑞
𝑐
· 𝐹′ · 𝑈′ 

 
Multiplizieren wir (26.3) von links mit unserer Matrix  𝐿  von (1.3) erhalten wir 
 

𝐿 · 𝐾	 = 	
𝑞
𝑐
· 𝐿 · 𝐹 · 𝑈	 = 	

𝑞
𝑐
· 𝐿 · 𝐹 · 𝐿8A · 𝐿 · 𝑈 

und somit 
𝐾′ = 	𝐿 · 𝐾	 = 	

𝑞
𝑐
· 𝐿 · 𝐹 · 𝐿8A · 𝐿 · 𝑈 	= 	

𝑞
𝑐
· 𝐹′ · 𝑈′ 

 
für die Matrix  𝐹′  mit   𝐹′ = 𝐿 · 𝐹 · 𝐿8A .   (26.4) 
 
Beschreibt also die Matrix  𝐹  das elektromagnetische Feld in einem Bezugssystem System S, dann beschreibt die Matrix 
𝐹′ = 𝐿 · 𝐹 · 𝐿8A  dasselbe elektromagnetische Feld in einem Bezugssystem S', welches sich mit der Geschwindigkeit  𝑣 
relativ zu  S  in der positiven x-Richtung bewegt. Wir werden die Transformation der einzelnen Komponenten von 𝐹  im 
nächsten Abschnitt untersuchen. 
 
 
  

(26.1) 

(26.2) 

(26.3) 



C27    Die Transformation des elektromagnetischen Feldes 
 
 
Entsprechend der Gleichung (26.4) brauchen wir zur Berechnung von 𝐹′ nichts anderes zu tun als das Produkt 𝐿 · 𝐹 · 𝐿8A  
der Matrizen  𝐿  und  𝐹  zu berechnen. Für 
 
 

𝐹	 = 	

0 𝐸K 𝐸v 𝐸w
𝐸K 0 𝑐 · 𝐵w −𝑐 · 𝐵v
𝐸v −𝑐 · 𝐵w 0 𝑐 · 𝐵K
𝐸w 𝑐 · 𝐵v −𝑐 · 𝐵K 0

														und														𝐿	 = 	

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

			 

 
 
erhält man nach braver Rechnung 
 
 

𝐹′	 = 	

0 𝐸K 𝛾+ · (𝐸v − 𝑣 · 𝐵w) 𝛾+ · (𝐸w + 𝑣 · 𝐵v)

𝐸K 0 	𝑐 · 𝛾+ · (𝐵w −
𝑣
𝑐F
· 𝐸v	) 		−𝑐 · 𝛾+ · (𝐵v −

𝑣
𝑐F
· 𝐸w	)

𝛾+ · (𝐸v − 𝑣 · 𝐵w) 				−𝑐 · 𝛾+ · (𝐵w −
𝑣
𝑐F
· 𝐸v	) 0 𝑐 · 𝐵K

𝛾+ · (𝐸w + 𝑣 · 𝐵v) 			𝑐 · 𝛾+ · (𝐵v −
𝑣
𝑐F
· 𝐸w	) −𝑐 · 𝐵K 0

 

 
 
Es gilt also   
 
 

					𝐸K′	 = 	𝐸K 	
𝑎
𝑏

			𝐵K′	 = 	𝐵K

																												𝐸v′	 = 	 𝛾+ · (𝐸v − 𝑣 · 𝐵w)	 																														𝐵v| = 𝛾+ · 𝐵v +
𝑣
𝑐F
· 𝐸w	

																										𝐸w′	 = 	 𝛾+ · (𝐸w + 𝑣 · 𝐵v) 																														𝐵w| = 	 𝛾+ · 𝐵w −
𝑣
𝑐F
· 𝐸v	

 

 
 
Für die Transformation in die andere Richtung  ist  𝑣  durch  −𝑣  und somit  𝐿  durch 𝐿8A  zu ersetzen. In den 
Beziehungen von (27.1) vertauschen dadurch in der zweiten und dritten Zeile die Pluszeichen und die Minuszeichen ihre 
Plätze. 
 
Die SRT vereinigt also das elektrische und das magnetische Feld zu einem einzigen elektromagnetischen Feld. Damit 
konnte Einstein die 'Asymmetrien' beheben, die er im ersten Satz seiner "Elektrodynamik bewegter Körper" von 1905 
beklagt: "Dass die Elektrodynamik Maxwells - wie dieselbe gegenwärtig aufgefasst zu werden pflegt - zu Asymmetrien 
führt, welche den Phänomenen nicht anzuhaften scheinen, ist bekannt." 
 
 
  

 (27.1) 



C28    Kraft und Beschleunigung im Speicherring 
 
 

Im Laborsystem S kreist ein Teilchen mit positiver Ladung  𝑞  in 
einem Speicherring. Das elektromagnetische Feld weist einzig 
eine Komponente  𝐵w = −𝐵  auf. Die erforderliche Zentripetal- 
kraft ist durch die Lorentzkraft gegeben: 
 

𝑓 = 		𝑞 · 𝐸 	+ 	𝑣	×	𝐵 = 𝑞 · (	0	, 𝑣 · 𝐵, 0	) 
 
Da die Kraft und die Beschleunigung senkrecht stehen auf 𝑣 
gilt nach (7.7) 

𝑓 = 	 𝛾+ · 𝑚G · 𝑎 
 
und daraus         𝑎 = (	0	, 𝑎v	, 0	)  mit   𝑎v =

Î·+·Ï
��·£¤

              (28.1) 
 
Mit  𝑎v =

+6

�
    ergibt sich noch   𝐵 = ��·+·£¤

Î·�
= j

Î·�
              (28.2) 

 
Im CERN bei Genf kreisen Protonen mit einer Geschwindigkeit von bis zu 299'780'455 m/s in einem Kreis herum, 
dessen Radius 4243 m beträgt (die Lichtgeschwindigkeit  𝑐  beträgt 299'792'458 m/s) . Damit ist  𝛾+ ≈ 111.75. Die 
benötigte Feldstärke  𝐵  ist also etwa 112 mal so gross wie nach der nicht-relativistischen Rechnung ! Statt einigen 
Milliteslas werden Feldstärken von bis zu 8.3 Tesla erzeugt, wozu supraleitende Magnete erforderlich sind. 
 
 
 
Wir berechnen 𝑎v im Laborsystem noch einmal, aber diesmal mit dem Formalismus der Vierervektoren. Es gilt mit (7.5) 
 

𝐾 =
𝑞
𝑐
· 𝐹 · 𝑈 = 𝛾+ ·

𝑞
𝑐
·

0 0 0 0
0 0 −𝑐 · 𝐵 0
0 𝑐 · 𝐵 0 0
0 0 0 0

·

𝑐
𝑣
0
0

= 𝛾+ ·
𝑞
𝑐
·

0
0

𝑣 · 𝑐 · 𝐵
0

=

0
0

𝛾+ · 𝑣 · 𝑞 · 𝐵
0

= 𝑚G · 𝛾+F ·

0
𝑎K
𝑎v
𝑎w

 

 
und wir erhalten ebenfalls (28.1) . 
 
Nun betrachten wir die Situation im Eigensystem S' des geladenen Teilchens. Es hat dort die Eigengeschwindigkeit 
𝑈′ = (𝑐, 𝑢) = (𝑐, 0,0,0) und, nach (10.8), die Eigenbeschleunigung 𝐴′ = 𝛾+F · (0, 𝑎K, 𝑎v, 𝑎w) . Wir berechnen diese 
Eigenbeschleunigung nochmals mit  𝐴′ = 𝐿 · 𝐴 : 
 

𝐴′ = 	

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

·

0
0

𝛾+F · 𝑎v
0

=

0
0

𝛾+F · 𝑎v
0

= 𝛾WF ·

0
𝑎K′
𝑎v′
𝑎w′

= 1 ·

0
𝑎K′
𝑎v′
𝑎w′

 

 
Daraus erhalten wir     𝐴′ = 𝐴       und        𝑎′ = 𝛾+F · 𝑎 = 	 (	0	,

��·Î·+·Ï
£¤

	 , 0	)  (28.3) 
 
Mit    𝐾′ = 𝑚G · 𝐴′ = 𝑚G · 𝐴 = 𝐾     und (7.7) folgt     𝑓′ = 𝑚G · 𝛾W · 𝑎′ = 𝑚G · 1 · 𝑎′ = 𝑚G · 𝛾+F · 𝑎 	= 	 𝛾+ · 𝑓    (28.4) 
 
 
Wir rechnen das noch ein zweites Mal durch im Eigensystem S' des Teilchens, benützen aber diesmal die Trans-
formationsformeln für das elektromagnetische Feld. Nach (27.1) haben wir 
 

𝐸K′	 = 	𝐸K 	= 	0	
𝑎
𝑏
	 		𝐵K′	 = 	𝐵K = 0																	

																																		𝐸v′	 = 	 𝛾+ · (𝐸v − 𝑣 · 𝐵w) = 	 𝛾+ · 𝑣 · 𝐵 												𝐵v| = 𝛾+ · 𝐵v +
𝑣
𝑐F
· 𝐸w	 = 0

																			𝐸w′	 = 	 𝛾+ · (𝐸w + 𝑣 · 𝐵v) = 0 																							𝐵w| = 	 𝛾+ · 𝐵w −
𝑣
𝑐F
· 𝐸v	 = −𝛾+ · 𝐵

 



Daraus            𝑓′ = 𝑞 · 𝐸′	 + 	𝑢	×	𝐵′ = 𝑞 · 𝐸′	 + 	0	×	𝐵′ = 𝑞 · (	0	, 𝛾+ · 𝑣 · 𝐵	, 0	) = 𝑚G · 𝛾W · 𝑎′ = 𝑚G · 1 · 𝑎′ 
 
und somit wieder                                                     𝑎′ = ��·+·Ï

£¤
	= 	 𝛾+F · 𝑎                                                        (28.3) = (28.5) 

 
 
 
 
 
 
Wegen      𝑓′ = 𝑚G · 𝑎′ = 𝑚G · 𝛾+F · 𝑎 = 	 𝛾+ · (𝛾+ · 𝑚G · 𝑎) = 𝛾+ · 𝑓   gilt also bei einer Zentripetalkraft im Eigensystem 
des Teilchens 
 
                                                                         𝑎′ = 𝛾+F · 𝑎            und       𝑓′ = 𝛾+ · 𝑓        (28.6) 
 
Das können wir noch begründen: 
 

𝑓v′ =
U
U`|
(𝑝v′) =

U
UO
(𝑝v) =

U
U`
(𝑝v) ·

U`
UO
= 𝛾+ ·

U
U`
(𝑝v) = 𝛾+ · 𝑓v     

 
Und, ganz ähnlich: 
 

								𝑎v′ =
U
UO

Uv|
UO

= U
UO

Uv
U`
· U`
UO

= U
UO

𝛾+ ·
Uv
U`

= 𝛾+ ·
U
UO

Uv
U`

= 𝛾+ ·
U
U`

Uv
U`

· U`
UO
= 𝛾+F ·

U
U`

Uv
U`

= 𝛾+F · 𝑎v   
 

 
𝛾+ ist ja, wenn die Kraft senkrecht steht auf der Geschwindigkeit, ein konstanter Faktor und kann deshalb bei der 
Differentiation ausgeklammert werden. Auch die Gleichung  𝑝v′ = 𝑝v lässt sich nicht auf die x-Richtung übertragen. 
Das gilt also alles nur für Kräfte, die senkrecht stehen auf der Bewegungsrichtung. 
 
Den anderen Spezialfall, wo  𝑓  und  𝑣  parallel sind, behandeln wir im nächsten Abschnitt. 
 
 
 
  
  



C29    Kraft und Beschleunigung beim Linearbeschleuniger 
 
 
Ein Teilchen der Ruhemasse 𝑚G und der Ladung  𝑞  werde längs der x-Richtung im Laborsystem S durch ein konstantes 
elektrisches Feld  𝐸 = 𝐸K  beschleunigt. Das angelegte magnetische Feld sei null. 
 
Es ist nach (7.6) 
 

𝑓 	= 	𝑞 · 𝐸 	= 	𝑞 · 𝐸K 	= 	 𝑓K 	= 	𝑚G · 𝛾p · 𝑎K  
somit   

𝑞 · 𝐸K
𝑚G

= 𝛾p · 𝑎K = 	 1 − 	
𝑣F

𝑐F

8pF
·
𝑑𝑣
𝑑𝑡

 

und 

																	
𝑞 · 𝐸K
𝑚G

· 𝑑𝑡	 = 	 1 − 	
𝑣F

𝑐F

8pF
· 𝑑𝑣 

 
Wir integrieren beidseits ( Bronstein-Integral Nr. 178 ) und erhalten 
 

																
𝑞 · 𝐸K
𝑚G

· 𝑡	 + 	𝐶		 = 		 𝑣 · 1 − 	
𝑣F

𝑐F

8AF
 

 
Die Konstante  𝐶  ist null falls die Anfangsgeschwindigkeit null ist. Lösen wir für diesen Fall (29.2) nach  𝑣  auf erhalten 
wir 
 

							𝑣(𝑡) =

𝑞 · 𝐸K
𝑚G

· 𝑡	

1 + 𝑞 · 𝐸K
𝑚G · 𝑐

F
· 𝑡F

	 

 
Am Anfang nimmt die Geschwindigkeit wie in der klassischen Physik linear zu. Der Nenner drosselt die Zunahme aber 
immer mehr, und für  𝑡 → ∞  erreicht die Geschwindigkeit den Grenzwert  𝑐  . Um das zu zeigen erweitern wir (29.3) mit 
mit 𝑐/𝑡 : 
 

lim
	`→Ñ

		
𝑐 · 𝑞 · 𝐸K𝑚G

𝑐F
𝑡F +

𝑞 · 𝐸K
𝑚G

F
	= 	

𝑐 · 𝑞 · 𝐸K𝑚G

𝑞 · 𝐸K
𝑚G

F
	= 	𝑐 

 
 
 
 
Und wie sieht der Vorgang im Eigensystem S' des beschleunigten Teilchens aus ? In jedem Moment gilt dort 
𝐸K′	 = 	𝐸K		,			𝐸v′	 = 	0			,			𝐸w′	 = 	0			,			𝐵K′	 = 𝐵K = 0			,			𝐵v′	 = 0				und				𝐵w′	 = 0 . Wir haben also in jedem Moment 
dieselbe Situation wie im Laborsystem S , die Gleichungen (29.1) und (29.2) gelten auch in S' . Wir können diese 
Gleichungen dort aber nicht auswerten, da S' ja gar kein Inertialsystem ist ! 
 
 
Wir studieren die Situation nochmals im Laborsystem S unter Verwendung von Vierervektoren. 
 
Es ist   𝐸 = 	 (	𝐸K	, 0	, 0	) , 𝐵 = 0  und  𝑣 = 𝑣(𝑡) 	= (	𝑣(𝑡)	, 0	, 0	) . Die drei Vektoren  𝑓	, 𝑣	 und 	𝑎  sind parallel. 
Weiter ist    𝑓 = 	𝑞 · 𝐸 	+ 	𝑣	×	𝐵 = 𝑞 · (	𝐸K	, 0	, 0	)    und      𝑓 · 𝑣 = 𝑞 · 𝑣 · 	𝐸K  . Damit können wir mit (7.5) die 
Gleichung für die Viererkraft aufstellen: 
 

 (29.2) 

 (29.3) 

 (29.4) 

 (29.1) 



𝐾 = 	𝛾 · 	

1
𝑐
· 𝑓 · 𝑣	

𝑓K
𝑓v
𝑓w

= 	
𝛾 ·
1
𝑐
· 𝑞 · 𝑣 · 	𝐸K

𝛾 · 𝑞 · 	𝐸K
0
0

	= 	𝑚G · 𝐴	 = 	𝑚G ·

𝛾q ·
1
𝑐
· 𝑣 · 	𝑎K

𝛾q ·
1
𝑐F
· 𝑣F · 𝑎K 	+ 𝛾F · 𝑎K	

0
0

 

 
 
(29.5) liefert uns zwei Gleichungen, eine für die zeitliche Komponente und eine für die erste räumliche Komponente.  
Die Gleichung für die zeitliche Komponente lautet gekürzt 
 

	𝑞 · 	𝐸K 	= 	𝑚G · 	𝛾p · 	𝑎K 
 
und wir sind wieder bei (29.1) und (7.6). Die Gleichung für die x-Komponente liefert gekürzt 
 

𝑓K 	= 	𝑞 · 	𝐸K 	= 	𝑚G · 𝛾p ·
1
𝑐F
· 𝑣F · 𝑎K 	+ 𝛾 · 𝑎K 	= 	𝑚G · 	𝛾p · 	𝑎K ·

𝑣F

𝑐F
+ 𝛾8F  

 
Die linken Seiten der beiden Gleichungen sind identisch, der Faktor +6

76
+ 𝛾8F   muss demnach 1 sein : 

 
𝑣F

𝑐F
+ 𝛾8F 	= 	

𝑣F

𝑐F
+ 1 −	

𝑣F

𝑐F
	= 	1 

 
Wir erhalten also zweimal dieselbe Gleichung für die Beschleunigung 	𝑎K . 
 
 
 
 
 
 
  
  

 (29.5) 



C30    Der stromführende Leiter 1 
 
 
In einem langen, geraden, zylindrischen Draht soll ein Strom 𝐼 fliessen. Der Draht ruhe im Laborsystem S, sein 
Querschnitt habe den Radius 𝑟  und die mittlere Driftgeschwindigkeit der Elektronen sei  𝑣 . Ist  𝑛  die Zahl der 
Leitungselektronen pro Volumeneinheit, so gilt für die Stromstärke im Draht 
 

𝐼	 = 	𝑛 · 𝑒 · 𝑟F · 𝜋 · 𝑣	                                                                             (30.1) 
 
Im Äussern des Drahtes wirkt auf eine ruhende Probeladung keine elektrische Kraft, es gibt kein elektrisches Feld. 
Der stromführende Leiter ist aber von ringförmigen Feldlinien eines Magnetfeldes umgeben : 
 

 
 
Der Strom fliesst von rechts nach links, die Elektronen driften also mit  𝑣  von links nach rechts. Die Symmetrie des 
Magnetfeldes entspricht der Symmetrie des stromdurchflossenen Leiters. 
 
Das Gesetz von Ampère liefert für die magnetische Feldstärke im Abstand  𝑑  von der Drahtmitte den Term 
 

𝐵v 	= 	
Ó¤
F·Ô

· Õ
U
	= 	 Ó¤

F·Ô
· A
U
· 𝑛 · 𝑒 · 𝑟F · 𝜋 · 𝑣                                                               (30.2) 

 
Damit gilt für das geladene Teilchen im Abstand  𝑑  von der Drahtmitte, welches sich ebenfalls mit der Drift-
geschwindigkeit  𝑣  der Elektronen in der x-Richtung bewegt 
 

𝑓 	= 		𝑞 · 𝑣	×	𝐵 	= 	𝑓w 	= 	𝑞 · 𝑣K · 𝐵v 	= 	𝑞 · 𝑣 · Ó¤
F·Ô

· A
U
· 𝑛 · 𝑒 · 𝑟F · 𝜋 · 𝑣	 = 	 Ó¤

F
· A
U
· 𝑞 · 𝑛 · 𝑒 · 𝑟F · 𝑣F	            (30.3) 

 
Nun wechseln wir ins Eigensystem S' des geladenen Teilchens. Im System S' hat das Teilchen die Geschwindigkeit null, 
ein eventuell vorhandenens Magnetfeld kann daher keine Kraftwirkung ausüben. Wenn das Teilchen in die z-Richtung 
vom Draht weggetrieben wird muss der Draht einen positiven Ladungsüberschuss aufweisen und damit ein elektrisches 
Feld erzeugen. Dem ist tatsächlich so, den Grund dafür finden wir in der Lorentz-Kontraktion. Das Erstaunliche dabei ist, 
dass diese sich schon bei den Driftgeschwindigkeiten in der Grössenordnung von 1 Millimeter pro Sekunde bemerkbar 
macht ! 
 
Wenn der Draht im System S kein elektrisches Feld besitzt und insgesamt ungeladen ist, dann haben die driftenden 
Elektronen dieselbe Ladungsdichte wie die ruhenden Gitteratome:   𝜌� 	+ 	𝜌8 	= 	𝑛 · 𝑒	 + 𝑛 · (−𝑒) 	= 	0 . Im System S' 
ist der Abstand der Elektronen nicht mehr lorentzverkürzt, dafür aber derjenige der Gitteratome. Deshalb gilt dort 
 

𝜌′	 = 	𝜌�′	 + 	𝜌8′	 = 	𝑛 · 𝑒 · 𝛾+ 	+ 𝑛 · (−𝑒) ·
A
��
	= 	𝑛 · 𝑒 · 	 𝛾+ −

A
��

	= 	𝑛 · 𝑒 · 𝛾+ · 𝛽+
F                     (30.4) 

 
Dieser positive Ladungsüberschuss pro Volumeneinheit erzeugt das elektrische Feld und damit die Kraft, welche auf 
unser geladenes Teilchen wirkt. 
 



Die Stärke des elektrischen Feldes im Abstand  𝑑 = 𝑑′  von der Drahtachse berechnet man mit dem Satz von Gauss: 
 

𝐸′ · 𝑑𝐴′ 		= 		
1
𝜀G
· 𝜌′ · 𝑑𝑉′ 

 
Die Integration erfolgt links über die Oberfläche eines beliebig gewählten geschlossenen Raumgebietes, rechts über das 
Volumen von diesem Raumgebiet. Wir wählen dafür einen zum Draht koaxialen Zylinder mit dem Radius  𝑑  und der 
beliebigen Länge ∆𝑙′ : 
 

 
 
Aus Symmetriegründen kann das E-Feld nur radial vom Draht weg zeigen, die Ladungsdichte zeichnet ja ( im Gegensatz 
zum Strom im System S ) die positive x-Richtung nicht mehr aus. Die beiden Kreisflächen können daher nichts beitragen 
zum linken Integral, weil dort der Flächenvektor senkrecht steht auf dem Feldvektor. Auf dem umlaufenden 
Zylindermantel steht  𝐸′  überall senkrecht und hat auch überall denselben Betrag. Das linke Integral ergibt somit   
 

𝐸′ · 𝑑𝐴 		= 	𝐸′ · 2 · 𝜋 · 𝑑 · ∆𝑙′ 

 
Beim rechten Integral trägt nur das Gebiet im Drahtinnern etwas bei, weil die Ladungsdichte ausserhalb null ist. Die 
Ladungsdichte im Innern ist durch (30.4) gegeben. Somit gilt 
 

1
𝜀G
· 𝜌′ · 𝑑𝑉′ 	= 	

1
𝜀G
· 𝜌′ · 𝑟F · 𝜋 · ∆𝑙′	 = 	

1
𝜀G
· 	 𝑟F · 𝜋 · ∆𝑙′ · 𝑛 · 𝑒 · 𝛾+ · 𝛽+

F 

 
Wir haben also                                     𝐸′ · 2 · 𝜋 · 𝑑 · ∆𝑙′	 = 		 A

Ù¤
· 	 𝑟F · 𝜋 · ∆𝑙′ · 𝑛 · 𝑒 · 𝛾+ · 𝛽+

F 
 
und vereinfacht                                                    𝐸′	 = 		 A

Ù¤
· A
F·U
	𝑟F · 𝑛 · 𝑒 · 𝛾+ · 𝛽+

F                                                       (30.5)                                         
 
Im System S' wirkt damit auf unser geladenes Teilchen im Abstand  𝑑  von der Drahtachse die Coulomb-Kraft 
 

𝑓′	 = 		𝑞 · 𝐸′	 = 	𝑓w′	 = 	𝑞 · 𝐸′	 = 	𝑞 · A
Ù¤
· A
F·U
	𝑟F · 𝑛 · 𝑒 · 𝛾+ · 𝛽+

F  
 
Mit  𝑐F = 1/(𝜀G · 𝜇G)   und   𝛽+

F = 𝑣F/𝑐F  lässt sich das noch vereinfachen zu 
 
                                                          𝑓′	 = 	𝑞 · 𝐸′	 = 	𝑞 · 𝜇G ·

A
F·U
	𝑟F · 𝑛 · 𝑒 · 𝛾+ · 𝑣F                                                    (30.6) 

 
 
Ein Vergleich mit (30.3) zeigt dass gilt  𝑓′	 = 	 𝛾+ · 𝑓 . Der Grund für das Auftauchen des Faktors 𝛾+  ist derselbe wie bei 
(28.6). 
 
Die Darstellung in diesem Abschnitt folgt über weite Strecken derjenigen in [2 - 5].  



C31    Der stromführende Leiter 2 
 
 
Wir betrachten dieselbe Situation wie im vorangehenden Abschnitt. Eine positive Probeladung  𝑞  bewegt sich parallel zu 
einem stromführenden langen geraden Draht mit derselben Geschwindigkeit, mit der sich die Leitungselektronen im 
Draht bewegen. Man beachte dazu die erste Zeichnung in C30 . 
 
Im letzten Abschnitt haben wir festgestellt, dass im Laborsystem S des ruhenden Drahtes eine Lorentzkraft auf das 
Teilchen wirkt. Nach (30.3) gilt 

																	𝑓 	= 𝑓w 	= 	𝑞 · 𝑣 · 𝐵v 	= 	𝑞 · 𝑣 ·
𝜇G
2 · 𝜋

·
𝐼
𝑑

 
 

Wir berechnen nun noch einmal, welche Kraft  𝑓′  im Eigensystem S' der Probeladung auf diese wirkt, diesmal aber unter 
Verwendung der Transformationsgleichungen für das elektromagnetische Feld.  
 
Im System S gilt   𝐸 = 0   und, am Ort des Teilchens,  𝐵 = 𝐵v =

Ó¤
F·Ô

· Õ
U
	 . Daraus erhalten wir mit (27.1) 

 
𝐸K′	 = 	𝐸K 	= 	0	

	𝑎
𝑏
											 				𝐵K′	 = 	𝐵K = 0																									

									𝐸v′	 = 	 𝛾+ · (𝐸v − 𝑣 · 𝐵w) = 	0 																		𝐵v′ = 𝛾+ · 𝐵v +
𝑣
𝑐F
· 𝐸w	 = 	𝛾+ · 𝐵v

																							𝐸w′	 = 	 𝛾+ · (𝐸w + 𝑣 · 𝐵v) = 𝛾+ · 𝑣 · 𝐵v 							𝐵w′ = 	 𝛾+ · 𝐵w −
𝑣
𝑐F
· 𝐸v	 = 0

 

 
Damit bestimmt sich die wirkende Kraft durch 
 

𝑓′ = 𝑞 · 𝐸′	 + 	𝑢	×	𝐵′ = 𝑞 · 𝐸′	 + 	0	×	𝐵′ = 𝑞 · 𝐸w′	 = 𝛾+ · 𝑞 · 𝑣 · 𝐵v 
 

Für diese Coulombkraft gilt somit 
𝑓′	 = 𝑓w′	 = 	 𝛾+ · 𝑞 · 𝑣 · 𝐵v 	= 	 𝛾+ · 𝑓	                                                            (31.2) 

 
Praktisch mühelos konnten wir das Ergebnis des letzten Abschnitts verifizieren. 
 
 
Es ist also   𝑓′ = 𝛾+ · 𝑞 · 𝑣 ·

Ó¤
F·Ô

· Õ
U
	     und     𝑓 = 	𝑞 · 𝑣 · Ó¤

F·Ô
· Õ
U
   . Dabei ist  𝐼  die Stromstärke, welche in S gemessen 

wird. 
 
Welche Stromstärke wird eigentlich im System S' gemessen ? Die Stromstärke ist definiert als Ladungsmenge, welche 
pro Zeiteinheit durch eine gedachte Querschnittfläche fliesst. Die Umrechnung ist für die Richtungen senkrecht zur 
Relativgeschwindigkeit 𝑣 einfach: 
 

𝐼v′ = 𝑑𝑄′/𝑑𝑡′ = 𝜌′ · 𝐴′ · 𝑢v′	 = 	 𝛾+ · 𝜌 ·
A
��
· 𝐴 · 𝛾+ · 𝑢v 	= 	 𝛾+ · 𝜌 · 𝐴 · 𝑢v = 	 𝛾+ · 𝐼v                    (31.3) 

 
Dabei ist 𝑢v die Driftgeschwindigkeit der Elektronen in der y-Richtung. Die Transformation dieser Driftgeschwindigkeit 
ist für die x-Richtung im Allgemeinen kompliziert. Bei uns ist in S'  die Driftgeschwindigkeit 𝑢K′ der Ladungsträger 
gerade −𝑣  und wir haben nach (30.4) und (30.1) in diesem Spezialfall ebenfalls 
 

𝐼K′ = 𝜌′ · 𝐴′ · 𝑢K′	 = 𝜌′ · 𝐴′ · −𝑣 	= 𝛾+ · 𝑛 · 𝑒 · 𝛾+ · 𝛽+
F · 𝐴 · −𝑣 	= 𝛾+ · −𝜌 · 𝐴 · −𝑣 = 	 𝛾+ · 𝐼K          (31.4) 

 
Damit gilt in unserer speziellen Situation 
 

				𝑓′ = 𝑞 · 𝑣 ·
𝜇G
2 · 𝜋

·
𝐼′
𝑑′
				und					𝑓 = 	𝑞 · 𝑣 ·

𝜇G
2 · 𝜋

·
𝐼
𝑑
									mit					𝑑′ = 𝑑		,			𝐼′ = 𝛾+ · 𝐼				und				𝐵v′ = 	 𝛾+ · 𝐵v	 

  
 (31.5)   

 (31.1) 



C32    Der stromführende Leiter 3 
 
 
Wir sind wieder in der Situation von C30. Diesmal soll die wirkende Kraft in S' mithilfe des Viererstroms 𝐽  bestimmt 
werden. 
 
Da der stromführende Draht insgesamt ungeladen ist, also kein E-Feld zeigt im Äusseren, ist die Ladungsdichte der 
driftenden Leitungselektronen betragsmässig gleich gross wie diejenige der Atome im Gitter, welche diese 
Leitungselektronen abgegeben haben. Wir nennen diese Ladungsdichten 𝜌  und  −𝜌 . Der gesamte Viererstrom  𝐽 im 
Sytem S des ruhenden Drahtes setzt sich zusammen aus dem Viererstrom  𝐽8  der Leitungselektronen und dem 
Viererstrom  𝐽� der Gitteratome: 
 

𝐽`c` 	= 	 𝐽� + 	𝐽8 	= 	𝜌 ·

(𝑐)
0
0
0

	+ 	 −𝜌 ·

(𝑐)
𝑣
0
0

	= 	

0
−𝜌 · 𝑣
0
0

	= 	

(𝜌`c` · 𝑐)
𝑗K
𝑗v
𝑗w

 

 
Die Driftgeschwindigkeit der Elektronen soll ja gleich sein wie die Relativgeschwindigkeit von S' gegenüber S.  
Zu  𝐽`c` gehört die Stromstärke  

𝐼	 = 	𝐼K 	= 	 𝑗K · 𝐴K 	= −𝜌 · 𝑣	 · 𝑟F · 𝜋                                                        (32.1) 
Es gilt 
 

				𝐽� 	= 	𝜌 ·

(𝑐)
0
0
0

= 𝜌G� · 1 ·

(𝑐)
0
0
0

= 𝜌G� · 𝛾W ·

(𝑐)
𝑢K
𝑢v
𝑢w

= 𝜌G� · 𝑈�												mit							𝐽� ∘ 𝐽� = 	𝜌G�F · 𝑐	F 

und 
 

𝐽8 	= 	−𝜌 ·

(𝑐)
𝑣
0
0

= 	𝜌G8 · 𝛾+ ·

(𝑐)
𝑣
0
0

= 𝜌G8 · 𝛾+ ·

(𝑐)
𝑣K
𝑣v
𝑣w

= −𝜌G8 · 𝑈8										mit							𝐽8 ∘ 𝐽8 = 	𝜌G8F · 𝑐	F 

 
𝜌G�		und 𝜌G8 sind die Ladungsdichten der positiven und der negativen Ladungsträger gemessen in ihrem Eigensystem. 
 
 
Wir bestimmen nun  𝐽′	,  𝐽�′  und  𝐽8′  im System S', indem wir die Viererströme in S von links mit der Lorentz-Matrix  𝐿 
multiplizieren. Wir erhalten 
 

𝐽�′	 = 	𝐿 · 𝐽� 	= 	

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

· 	𝜌 ·

(𝑐)
0
0
0

= 	𝜌 · 𝛾 ·

(𝑐)
−𝑣
0
0

 

 

𝐽8′	 = 	𝐿 · 𝐽8 	= 	

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

· 	 −𝜌 ·

(𝑐)
𝑣
0
0

= 	−𝜌 · 𝛾 ·

𝑐 − 𝛽 · 𝑣
−𝛽 · 𝑐 + 𝑣

0
0

= −𝜌 · 𝛾 ·

𝑐 − 𝛽 · 𝑣
0
0
0

 

und 

𝐽′	 = 	 𝐽�′ + 	 𝐽8′	 = 𝜌 · 𝛾 ·

(𝑐)
−𝑣
0
0

− 𝜌 · 𝛾 ·

𝑐 − 𝛽 · 𝑣
0
0
0

= 𝜌 · 𝛾 ·

𝛽 · 𝑣
−𝑣
0
0

=

𝑐 · 𝜌′`c`
𝑗K′
𝑗v′
𝑗w′

 

 
Die Stromdichte der in S driftenden Elektronen ist in S' erwartungsgemäss null geworden, während die Gitteratome ohne 
ihre Leitungselektronen einen elektrischen Strom in die negative x-Richtung bilden. Dieser Strom hat die Stärke 
 

𝐼′	 = 	𝐼K′	 = 	 𝑗K′ · 𝐴K′	 = 		𝜌 · 𝛾 · (−𝑣) · 𝑟F · 𝜋	 = 	𝛾 · 𝐼                                              (32.2) 



 
Dieser Strom 𝐼′ erzeugt im Abstand 𝑑′ = 𝑑 nach dem Gesetz von Ampère die magnetische Feldstärke 
 

𝐵v′ =
𝜇G
2 · 𝜋

·
𝐼′
𝑑′
	=

𝜇G
2 · 𝜋

·
	𝛾 · 𝐼
𝑑

	= 𝛾 ·
𝜇G
2 · 𝜋

·
	𝐼
𝑑
= 𝛾 · 𝐵v 

 
Dieses Magnetfeld übt aber keine Kraft aus auf unser geladenes Teilchen, da es ja in S' ruht. 
 
Die gesamte Ladungsdichte des Drahtes ist jetzt nicht mehr null, sondern  
 

𝜌`c`| 	= 	𝜌 · 𝛾 · 𝛽 · 𝑣 · A
7
	= 	𝜌 · 𝛾 · 𝛽F                                                                 (32.4)   

 
Diese Ladungsdichte erzeugt nach dem Satz von Gauss im Abstand  𝑑′ = 𝑑  eine elektrische Feldstärke  𝐸′ , für die nach 
C30 gilt 

𝐸′ · 2 · 𝜋 · 𝑑′ · ∆𝑙′	 = 	
1
𝜀G
· 𝜌`c`| · 𝑟F · 𝜋 · ∆𝑙′	 

Also  

𝐸| =
1

2 · 𝜋 · 𝜀G
·
1
𝑑′
· 𝜌`c`| · 𝑟F · 𝜋	 = 	

1
2 · 𝜋 · 𝜀G

·
1
𝑑′
	 · 	𝜌 · 𝛾 · 𝛽F · 𝑟F · 𝜋	 = 	−

1
2 · 𝜋 · 𝜀G

·
1
𝑑′
	 · 𝛽F ·

1
𝑣
	 · 	𝐼′ = 

 

															= 	−	
1

2 · 𝜋 · 𝜀G
·
1
𝑑′
	 ·
𝑣F

𝑐F
·
1
𝑣
	 · 	𝐼′ = −	

𝜇G · 𝜀G
2 · 𝜋 · 𝜀G

·
1
𝑑′
	 · 𝑣 · 	𝐼′	 = −

𝜇G
2 · 𝜋

·
𝐼′
𝑑′
· 𝑣	 = 	𝐵v′ · 𝑣	 = 	𝛾 · 𝐵v · 𝑣	 

 
Für die Coulombkraft auf das geladene Teilchen in S' erhalten wir wie in (31.2) 
 

𝑓′	 = 𝑓w′	 = 𝑞 · 𝐸| = 	𝑞 · 𝛾+ · 𝑞 · 𝑣 · 𝐵v 	= 	 𝛾+ · 𝑓	                                                 (32.6) 
 
 
 
Den Viererstrom  𝐽 = (	0	, −𝜌 · 𝑣	, 0	, 0)a  hätten wir gleich hinschreiben können.  𝐿  hätte daraus sofort den Viererstrom  
𝐽′  und damit die Stromstärke und die Ladungsdichte im System S' geliefert: 
 

𝐽′	 = 	𝐿 · 𝐽	 = 	

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

· 	

0
−𝜌 · 𝑣
0
0

=

𝜌 · 𝑣 · 𝛾 · 𝛽
−𝜌 · 𝛾 · 𝑣

0
0

=

𝑐 · 𝜌′`c`
𝑗K′
𝑗v′
𝑗w′

=

𝑐 · 𝜌 · 𝛾 · 𝛽F
−𝜌 · 𝛾 · 𝑣

0
0

 

 
Daraus kann man wie gezeigt das B'-Feld und das E'-Feld des Leiters im System S' berechnen. Alle Resultate stimmen 
komplett überein mit denjenigen, die wir auf anderen Wegen in den Abschnitten C28 und C29 gefunden haben. 
 
Wir haben einen gewissen Aufwand getrieben um zu zeigen, dass der Viererstrom im allgemeinen nicht in der Form 
 𝐽 = 𝜌G · 𝑈  geschrieben werden kann. Nur in dieser speziellen Form ist offensichtlich, dass  𝐽  ein Vierervektor ist. Die 
gesamte Ladungsdichte ist aber oft verschieden von der Dichte der strömenden Ladungen, und dann ist diese Schreib-
weise nicht möglich. In unserem Beispiel liess sich der Viererstrom  𝐽  immerhin aus zwei derartigen speziellen 
Viererströmen zusammensetzen. Und nach A2 ist die Summe zweier Vierervektoren wieder ein Vierervektor. 
 
 
  

  (32.3)   

 (32.5)   



C33    Die Leiterschlaufe im Magnetfeld 
 
 
Im Laborsystem S wird ein Metallstab in der x-Richtung mit der konstanten Geschwindigkeit  𝑣  bewegt. Der Metallstab 
ist in gutem leitenden Kontakt mit einem U-förmigen Metallbügel. Die ganze eingeschlossene Fläche wird von einem 
vertikalen Magnetfeld durchdrungen : 
 

 
 
Im Laborsystem wirkt auf die Elektronen im gleitenden Stab die Lorentz-Kraft   

 
           𝑓 	= 𝑓v 	= 	−𝑒 · −𝑣 · 𝐵w 	= 	𝑒 · 𝑣 · 𝐵w                                                       (33.1) 

 
Im geschlossenen Stromkreis fliesst daher ein Strom 𝐼 . Die Stärke dieses induzierten Stromes lässt sich über das 
Induktionsgesetz berechnen. Für den Betrag der induzierten Spannung gilt 
 

𝑈s�U 	= 	
𝑑Φ
𝑑𝑡

	= 	𝐵 ·
𝑑A
𝑑𝑡
	= 	𝐵 · 𝑙 · 𝑣 

 
Die induzierte Stromstärke ist entsprechend 
 

𝐼	 = 	𝑈s�U	/	𝑅	 = 		𝐵 · 𝑙 · 𝑣	/	𝑅 
 
wo  𝑅  der Ohm'sche Widerstand des Stromkreises ist. 
 
Im Eigensystem S' des bewegten Stabes ist die mittlere Geschwindigkeit der Elektronen null. Ein Magnetfeld kann somit 
auf diese Elektronen keine Kraft ausüben. Allerdings liefert die Transformation des elektromagnetischen Feldes im 
System S' ein ein elektrisches Feld, welches in die y-Richtung zeigt: 
 

𝐸K′	 = 	𝐸K 	= 	0				,			𝐸v′	 = 𝛾+ · 𝐸v − 𝑣 · 𝐵w 	= 	−𝛾+ · 𝑣 · 𝐵w					,			𝐸w′	 = 𝛾+ · 𝐸w + 𝑣 · 𝐵v 	= 	0		 
 
Auf die Elektronen im Metallstab wirkt somit eine Coulombkraft vom Betrag 
 

𝑓′	 = 	 𝑓v′	 = 	 −𝑒 · −𝛾+ · 𝑣 · 𝐵w 	= 	 𝛾+ · 𝑒 · 𝑣 · 𝐵w = 	 𝛾+ · 𝑓	                                        (33.2) 
 

 
Wie in den vorangegangenen Abschnitten gilt  𝑓′ = 𝛾+ · 𝑓	.  Nach C29  ist in S'  auch der induzierte Strom in der  
y-Richtung um den Faktor  𝛾+  grösser: 

	𝐼′	 = 𝛾+ · 𝐼                                                                                       (33.3) 
 
Ist auch die Induktionsspannung um diesen Faktor grösser ? Die Antwort ist 'ja' : 
 

𝑈s�U′	 = 	
𝑑Φ′
𝑑𝑡′

	= 	𝐵w′ ·
𝑑A′
𝑑𝜏

	= 𝛾+ · 𝐵w ·
𝑑A/𝛾+
𝑑𝑡

·
𝑑𝑡
𝑑𝜏
	= 	 𝛾+ · 𝐵 ·

𝑑A/𝛾+
𝑑𝑡

· 𝛾+ = 𝛾+ · 𝐵 ·
𝑑A
𝑑𝑡
	= 	 𝛾+ · 𝑈s�U  

 
Für den Ohm'sche Widerstand gilt demnach  𝑅| = 𝑅 : 
 

𝑅′	 = 	
𝑈s�U′	
𝐼′

	= 	
𝛾+ · 𝑈s�U	
𝛾+ · 𝐼

	= 	
𝑈s�U	
𝐼

	= 	𝑅 



C34    Die erste Invariante des elektromagnetischen Feldes 
 
 
Bewegt sich das Bezugssystem S' mit konstanter Geschwindigkeit  𝑣  in der x-Richtung des Bezugssystems S dann gilt 
für die Beschreibungen des elektromagnetischen Feldes in den beiden Bezugssystemen immer 
 

𝐸 · 𝐵 	= 	𝐸′ · 𝐵′                                                                                  (34.1) 
 

Das Skalarprodukt  𝐸 · 𝐵  ist also eine relativistische Invariante. Wenn die Feldvektoren  𝐸  und  𝐵  in einem System S 
senkrecht stehen aufeinander dann tun sie das auch in jedem anderen Inertialsystem S' . 
 
 
Der Beweis von (34.1) lässt sich leicht direkt führen über die Transformationsgleichungen (27.1), siehe dazu [2 - 34.20]. 
Wir machen es etwas komplizierter und führen eine Matrix 𝑀 ein, welche uns auch später noch von Nutzen sein wird: 
 

𝑀	 = 	

0 𝑐 · 𝐵K 𝑐 · 𝐵v 𝑐 · 𝐵w
𝑐 · 𝐵K 0 −𝐸w 𝐸v
𝑐 · 𝐵v 𝐸w 0 −𝐸K
𝑐 · 𝐵w −𝐸v 𝐸K 0

 

 
𝑀  gibt eine 'duale' Beschreibung des elektromagnetischen Feldes und ist mit unserer Matrix  𝐹  eng verknüpft. Eine 
einfache Matrizenmultiplikation zeigt, dass gilt 
 

𝑀 · 𝐹	 = 	𝐹 · 𝑀	 = 	𝑐 · 𝐸 · 𝐵 · 	

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

	 = 		𝑐 · 𝐸 · 𝐵 · 𝐼𝑑q 

 
Die Spur , also die Summe der Diagonalelemente von  𝑀 · 𝐹, ist somit   4 · 𝑐 · 𝐸 · 𝐵 .  
 
Wenn  𝐹  das elektromagnetische Feld im System S  beschreibt dann beschreibt nach (24.4)  𝐹′ = 𝐿 · 𝐹 · 𝐿8A  dasselbe 
elektromagnetische Feld im System S' . Man kann sich durch Nachrechnen davon überzeugen, dass auch für die Matrix  
𝑀  gilt   𝑀′ = 𝐿 · 𝑀 · 𝐿8A . Es ist also 
 

𝐹′ = 𝐿 · 𝐹 · 𝐿8A									und									𝑀′ = 𝐿 · 𝑀 · 𝐿8A                                                    (34.4)v 
 

Damit gilt  
 

4 · 𝑐 · 𝐸 · 𝐵 	= 	spur(𝑀 · 𝐹) 	= 	spur(	𝐿 · 𝑀 · 𝐿8A · 𝐿 · 𝐹 · 𝐿8A) 	= 	spur(𝑀′ · 𝐹′) 	= 	4 · 𝑐 · 𝐸′ · 𝐵′ 
 

womit (34.1) bewiesen ist. 
 
Für die Determinanten der Matrizen  𝐹, 𝐹′, 𝑀 und 𝑀′  gilt übrigens noch 
 

𝑑𝑒𝑡(𝐹) 	= 𝑑𝑒𝑡(𝐹′) = 𝑑𝑒𝑡(𝑀) = 𝑑𝑒𝑡(𝑀′) = 	−𝑐F · 𝐸 · 𝐵
F
                                        (34.5)d 

 
 
Wenn ein Feld in ein reines B'-Feld transformiert werden kann gilt wegen  𝐸′ = 0  auch  𝐸′ · 𝐵′ = 0 . Das ist nach 
(34.1) nur möglich, wenn auch 𝐸 · 𝐵 = 0 gilt. Dasselbe gilt natürlich auch, wenn ein Feld in ein reines E'-Feld 
transformiert werden kann. 
 
 
 
 
  

 (34.2)   

 (34.3)   



C35    Die zweite Invariante des elektromagnetischen Feldes 
 
 
Bewegt sich das Bezugssystem S' mit konstanter Geschwindigkeit  𝑣  in der x-Richtung des Bezugssystems S dann gilt 
für die Beschreibungen des elektromagnetischen Feldes in den beiden Bezugssystemen immer 
 

𝐸F − 𝑐F · 𝐵F 	= 	𝐸′F − 𝑐F · 𝐵′F                                                                         (35.1) 
 

Dabei ist    𝐸F = 𝐸 · 𝐸   und  𝐵F = 𝐵 · 𝐵  das konventionelle Skalarprodukt der 3d-Feldvektoren. 
 
Für den Beweis von (35.1) betrachten wir die Determinanten von  𝐹 + 𝑀  und 𝐹 − 𝑀 . Die Rechnung zeigt, dass gilt 
 

𝑑𝑒𝑡(𝐹 + 𝑀) 	= 𝑑𝑒𝑡(𝐹 − 𝑀) = 	− 𝐸F − 𝑐F · 𝐵F F                                                       (35.2) 
 
Sowieso gilt für 4x4-Matrizen    𝑑𝑒𝑡(𝐹 − 𝑀) = 𝑑𝑒𝑡(𝑀 − 𝐹) . Es gilt also sogar 
 

𝑑𝑒𝑡(𝐹 + 𝑀) 	= 𝑑𝑒𝑡(𝐹 − 𝑀) = 𝑑𝑒𝑡(𝑀 − 𝐹) = 𝑑𝑒𝑡(−𝑀 − 𝐹) = 	− 𝐸F − 𝑐F · 𝐵F F                        (35.3) 
 
Entsprechendes gilt im System S' : 
 

𝑑𝑒𝑡(𝐹′ + 𝑀′) 	= 𝑑𝑒𝑡(𝐹′ − 𝑀′) = 𝑑𝑒𝑡(𝑀′ − 𝐹′) = 𝑑𝑒𝑡(−𝑀′ − 𝐹′) = 	− 𝐸′F − 𝑐F · 𝐵′F F                    (35.4) 
 

Nun gilt aber 
det 𝐹 + 𝑀 = det 𝐿 · 𝐹 + 𝑀	 · 𝐿8A = det 𝐿 · 𝐹 + 𝐿 · 𝑀	 · 𝐿8A	 =	 

= 	det 𝐿 · 𝐹 · 𝐿8A + 𝐿 · 𝑀 · 𝐿8A	 	 = 𝑑𝑒𝑡(𝐹′ + 𝑀′) 
 
Damit ist erst bewiesen, dass gilt     𝐸F − 𝑐F · 𝐵F F 	= 	 𝐸′F − 𝑐F · 𝐵′F F . Nach (25.1) hängen die Werte von 𝐸F und 
𝐵F aber stetig von der Relativgeschwindigkeit  𝑣  ab. Ist der Wert von  𝐸F − 𝑐F · 𝐵F  zum Beispiel positiv, dann bleibt er 
bei variierendem Wert von  v  immer positiv, er kann nicht plötzlich auf  − 𝐸F − 𝑐F · 𝐵F  umspringen. Daher ist nicht 
nur das Quadrat von 𝐸F − 𝑐F · 𝐵F invariant, sondern schon 𝐸F − 𝑐F · 𝐵F selber. Damit ist (35.1) bewiesen. 
 
Natürlich kann man (35.1) auch beweisen, indem man in  𝐸′F − 𝑐F · 𝐵′F  die entsprechenden Terme gemäss (27.1) 
einsetzt und zeigt, dass man schliesslich  𝐸F − 𝑐F · 𝐵F  erhält. Diese Rechnung wird in [2 - 34.21] vorgeführt. 
 
 
 
Aus (35.1) kann man noch den Schluss ziehen, dass man ein reines E-Feld nie in ein reines B'-Feld umwandeln kann. 
Dann würde ja nach (35.1) gelten   𝐸F 	= −𝑐F · 𝐵′F	, was nur bei verschwindendem E- und B'-Feld möglich ist. 
 
(35.1) zeigt noch, dass ein Feld nur dann in ein reines B'-Feld transformiert werden kann, wenn  𝐸F − 𝑐F · 𝐵F 	≤ 	0 
gilt. Entsprechend kann ein Feld nur dann in ein reines E'-Feld transformiert werden, falls  𝐸F − 𝑐F · 𝐵F 	≥ 	0 . 
In beiden Fällen muss nach dem letzten Abschnitt die zusätzliche Bedingung  𝐸 · 𝐵 = 0  erfüllt sein. 
Die notwendigen und hinreichenden Bedingungen dafür studieren wir im nächsten Abschnitt. 
 
 
  



C36    Welche Felder lassen sich ganz wegtransformieren ? 
 
 
Die Antwort kommt direkt aus den Gleichungen (27.1). Diese Gleichungen liefern die notwendigen und hinreichenden 
Bedingungen dafür, dass die entsprechende Transformation möglich ist. Die notwendigen Bedingungen, die wir in den 
letzten beiden Abschnitten gefunden haben, sind dann automatisch erfüllt. 
 
Es soll also im System S' nur noch ein B'-Feld geben, es soll also  𝐸′ = 0  gelten. Aus (27.1) folgt dann 
 

𝐸K = 0				,					𝐸v − 𝑣 · 𝐵w 	= 	0							und						𝐸w + 𝑣 · 𝐵v 	= 	0 
also 

𝐸K = 0				,					𝐸v = 𝑣 · 𝐵w								und						𝐸w = 	−𝑣 · 𝐵v                                              (36.1) 
 
Das ist die notwendige und hinreichende Bedingung dafür, das sich das E-Feld wegtransformieren lässt. 
Damit ist die notwendige Bedingung von C34, nämlich 𝐸 · 𝐵 = 0 , bereits erfüllt: 
 

𝐸 · 𝐵 = 𝐸K · 𝐵K + 𝐸v · 𝐵v + 𝐸w · 𝐵w = 	0 · 𝐵K + 𝑣 · 𝐵w · 𝐵v + −𝑣 · 𝐵v · 𝐵w 	= 𝑣 · 𝐵w · 𝐵v − 𝑣 · 𝐵w · 𝐵v = 0 
 
Auch die Voraussetzung aus C35 ist damit bereits erfüllt: 
 

𝐸F − 𝑐F · 𝐵F = 0 + 𝑣F · 𝐵wF + 𝑣F · 𝐵vF − 	𝑐F · (𝐵KF + 𝐵vF + 𝐵wF) = −𝑐F · 𝐵KF + (𝑣F − 𝑐F) · (𝐵vF + 𝐵wF) 	≤ 	0 
 
 
Ebenso einfach ist die Antwort auf die Frage, wann es im System S' nur noch ein E'-Feld hat, also dass  𝐵′ = 0   
gilt. Aus den Gleichungen (27.2) folgt dann 
 

𝐵K = 0				,					𝐵v +
𝑣
𝑐F
· 𝐸w 	= 	0							und						𝐵w −

𝑣
𝑐F
· 𝐸v 	= 	0 

also 
𝐵K = 0				,					𝐵v = − +

76
· 𝐸w								und						𝐵w = 	

+
76
· 𝐸v                                              (36.2) 

 
Damit sind auch die beiden notwendigen Bedingungen  𝐸 · 𝐵 = 0  und   𝐸F − 𝑐F · 𝐵F ≥ 	0  erfüllt. 
 
Es wird noch einmal deutlich, dass sich ein reines E-Feld oder ein reines B-Feld nicht wegtransformieren lassen. 
 
 
 
 
 
  



C37    Der Nabla-Operator als Viererform 
 
 
Die Gleichungen von Maxwell lassen sich mit dem Vierer-Nabla-Operator elegant schreiben, der definiert ist durch 
 

𝑁s 	= 	
1
𝑐
·
𝜕
𝜕𝑡
	 ,
𝜕
𝜕𝑥
	 ,
𝜕
𝜕𝑦
	 ,
𝜕
𝜕𝑧
		  

 
Wir wollen nun zeigen dass gilt 
 

																					𝑁s′	 = 	
1
𝑐
·
𝜕
𝜕𝑡′
	 ,
𝜕
𝜕𝑥′

	 ,
𝜕
𝜕𝑦′

	 ,
𝜕
𝜕𝑧′

	 = 𝑁s · 𝐿8A 

 
Mit anderen Worten: 𝑁s transformiert sich wie eine Viererform, also gemäss (9.6) .  
 
 
Es ist 
 

𝑁s · 𝐿8A = 	
1
𝑐
·
𝜕
𝜕𝑡
	 ,
𝜕
𝜕𝑥
	 ,
𝜕
𝜕𝑦
	 ,
𝜕
𝜕𝑧
		 ·

𝛾 𝛾 · 𝛽 0 0
𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

=
1
𝑐
· 𝛾 ·

𝜕
𝜕𝑡
+ 𝛾 · 𝛽 ·

𝜕
𝜕𝑥
	 ,
1
𝑐
· 𝛾 · 𝛽 ·

𝜕
𝜕𝑡
+ 𝛾 ·

𝜕
𝜕𝑥
,
𝜕
𝜕𝑦
	 ,
𝜕
𝜕𝑧

 

 
Wir müssen nun zeigen, dass wir rechts 𝑁s′ erhalten haben. 
 

• es	ist			 á
áv
	= 	 á

áv|
			da	in	unserem	Setting	immer		𝑑𝑦 = 𝑑𝑦′		gilt	

	
• genauso	gilt	auch		 á

áw
	= 	 á

áw|
			

	
• es	sei	nun		𝑓		eine	beliebige	Funktion,	die	von	der	Variablen	𝑡′	abhängt.	Die	Gleichungen	(1.1)	zeigen	wie	

𝑡′	selber	von	𝑡	und	𝑥	abhängt.	Es	gilt	
	

𝜕𝑓
𝜕𝑡′

	=
𝜕𝑓
𝜕𝑡
·
𝜕𝑡
𝜕𝑡′

+
𝜕𝑓
𝜕𝑥

·
𝜕𝑥
𝜕𝑡′

	= 	
𝜕𝑓
𝜕𝑡
· 𝛾 +

𝜕𝑓
𝜕𝑥

· 𝛾 · 𝛽 · 𝑐 
 Somit ist    

1
𝑐
·
𝜕
𝜕𝑡′

	= 	
1
𝑐
· 𝛾 ·

𝜕
𝜕𝑡
	+ 	𝛾 · 𝛽 ·

𝜕
𝜕𝑥

 
 

 und der Beweis ist auch für die erste Komponente von 𝑁s′ geführt. 
 

• Genauso	zeigen	wir	noch,	dass	(37.2)	auch	für	die	zweite	Komponente	richtig	ist:	
 

𝜕𝑓
𝜕𝑥′

	=
𝜕𝑓
𝜕𝑡
·
𝜕𝑡
𝜕𝑥′

+
𝜕𝑓
𝜕𝑥

·
𝜕𝑥
𝜕𝑥′

	= 	
𝜕𝑓
𝜕𝑡
· 𝛾 · 𝛽 ·

1
𝑐
+
𝜕𝑓
𝜕𝑥

· 𝛾 
 Somit 

𝜕
𝜕𝑥′

	= 	
1
𝑐
· 𝛾 · 𝛽 ·

𝜕
𝜕𝑡
+ 𝛾 ·

𝜕
𝜕𝑥

 
 
 Das ist genau der Term den wir oben mit dem Produkt  𝑁s · 𝐿8A erhalten haben. 
 
 
Unser Operator transformiert sich also wie eine Viererform. 
 
  

 (37.1)   

 (37.2)   



C38    Die Gleichungen von Maxwell für das Vakuum 
 
 
Die Gleichungen von Maxwell werden gerne mit dem 3d-Nabla-Operator  ∇	= á

áK
	 , á
áv
	 , á
áw
	
a

 geschrieben. Er wird als 
Spaltenvektor aufgefasst, der dann mit den Feldvektoren Skalarprodukte oder Vektorprodukte bilden soll. 
 

• ∇ · 𝐸 = A
Ù¤
· 𝜌				soll	also	heissen					ái

áK
	+ 		 ái

áv
	+ 	ái

áw
	= 	 A

Ù¤
· 𝜌	 = 	 𝜇G · 𝑐F · 𝜌		

Quellen	des	elektrischen	Feldes	sind	die	elektrischen	Ladungen.	
	

• ∇	x	𝐵 = 𝜇G · 𝚥 + 𝜀G ·
ái
á`

			bedeutet	ausgeschrieben	

áÏä
áv
− áÏÅ

áw
	 , áÏ¡

áw
− áÏä

áK
	 , áÏÅ

áK
− áÏ¡

áv

a
= 𝜇G · 𝑗K + 𝜀G ·

ái¡
á`
	 , 𝑗v + 𝜀G ·

áiÅ
á`
	 , 𝑗w + 𝜀G ·

áiä
á`

a
		

	
Wirbel	im	B-Feld	entstehen	um	Ströme	und	bei	zeitlich	veränderlichen	E-Feldern.	𝚥		ist	dabei	der	3d-Strom-
dichtevektor	
	

Diese 1+3 Gleichungen können wir mit der Matrix 𝐹 zu einer einzigen Gleichung zusammenfassen : 
 

									 	
1
𝑐
·
𝜕
𝜕𝑡
	 ,
𝜕
𝜕𝑥
	 ,
𝜕
𝜕𝑦
	 ,
𝜕
𝜕𝑧
		 ·

0 𝐸K 𝐸v 𝐸w
𝐸K 0 𝑐 · 𝐵w −𝑐 · 𝐵v
𝐸v −𝑐 · 𝐵w 0 𝑐 · 𝐵K
𝐸w 𝑐 · 𝐵v −𝑐 · 𝐵K 0

= 𝑐 · 𝜇G · (𝑐 · 𝜌, −𝑗K, −𝑗v, −𝑗w) 

 
Mit unseren Bezeichnern können wir (38.1) sehr schlank schreiben: 
 

𝑁s · 𝐹	 = 	𝑐 · 𝜇G · 𝐽s 
 
Dabei ist  𝐽s = 	 (𝑐 · 𝜌, −𝑗K, −𝑗v, −𝑗w)  die Viererform zum Viererstrom  𝐽s, und wir haben zudem benützt dass gilt 
𝜀G · 𝜇G = 	1/𝑐F . 
 

 
Wir kommen nun zur zweiten Hälfte von Maxwells Gleichungen. 
 

• ∇ · 𝐵 = 0			bedeutet			áÏ
áK
	+ 		 áÏ

áv
	+ 	áÏ

áw
	= 0	.	Das	magnetische	Feld	ist	'quellenfrei',	es	gibt	keine	magnetischen	

Monopole.	
	

• ∇	x	𝐸 	= − áÏ
á`
						bedeutet				 áiä

áv
− áiÅ

áw
	 , ái¡
áw
− áiä

áK
	 , áiÅ
áK

− ái¡
áv

a
= 	 − áÏ¡

á`
	 , − áÏÅ

á`
	 , − áÏÅ

á`
	
a
	

Wirbel	im	elektrischen	Feld	werden	durch	zeitlich	veränderliche	Magnetfelder	verursacht.	
	

Diese 1+3 Gleichungen können wir mit der Matrix 𝑀 zu einer einzigen Gleichung zusammenfassen : 
 

	
1
𝑐
·
𝜕
𝜕𝑡
	 ,
𝜕
𝜕𝑥
	 ,
𝜕
𝜕𝑦
	 ,
𝜕
𝜕𝑧
		 ·

0 𝑐 · 𝐵K 𝑐 · 𝐵v 𝑐 · 𝐵w
𝑐 · 𝐵K 0 −𝐸w 𝐸v
𝑐 · 𝐵v 𝐸w 0 −𝐸K
𝑐 · 𝐵w −𝐸v 𝐸K 0

= 	 0, 0, 0, 0  

 
oder mit unseren Bezeichnern 
 

𝑁s · 𝑀	 = 	 0, 0, 0, 0  
 
  

(38.1) 

(38.2) 

(38.3) 

(38.4) 



C39  Maxwells Gleichungen sind forminvariant 
 
 
Im letzten Abschnitt haben wir gesehen, dass die 2·(1 + 3) Gleichungen von Maxwell mit unseren Matrizen sehr 
konzentriert geschrieben werden können: 
 

𝑁s · 𝐹	 = 	𝑐 · 𝜇G · 𝐽s	 
und 

𝑁s · 𝑀	 = 	 0s 
 
 
mit den Linearformen      𝐽s 	= (𝑐 · 𝜌, −𝑗K, −𝑗v, −𝑗w)    und     0s = 0, 0, 0, 0  . 
 
Wir wissen auch von allen beteiligten Grössen, wie sie sich beim Übergang vom Bezugssystem S zu einem anderen 
Bezugssystem S' transformieren. Damit wird es nun sehr leicht zu zeigen, dass alle Gleichungen von Maxwell in genau 
derselben Form auch in S' gelten, wenn sie in S gelten: 
 
 
 
 
 
 
 
 
 
Damit ist die Forminvarianz der zweiten vier Gleichungen bewiesen. Genau gleich machen wir es für die ersten vier 
Gleichungen: 
 
 
 
 
 
 
 
 
 
Hier ernten wir die Früchte unserer Vorbereitungsarbeiten ! 
 
 
 
Maxwells Theorie des elektromagnetischen Feldes, die Invarianz der elektrischen Ladung, die Formulierung der Lorentz-
Kraft und die Spezielle Relativitätstheorie passen bestens zusammen. 
 
  

 𝑁s · 𝑀	 = 	 0s 
⟺ 𝑁s · 𝐿8A · 𝐿 · 𝑀	 = 	 0s 
⟺ 𝑁s · 𝐿8A · 𝐿 · 𝑀 · 𝐿8A 	= 	 0s · 𝐿8A 
⟺ 𝑁s′ · 𝑀′	 = 	 0s 

 𝑁s · 𝐹	 = 	𝑐 · 𝜇G · 𝐽s	 
⟺ 𝑁s · 𝐿8A · 𝐿 · 𝐹	 = 		𝑐 · 𝜇G · 𝐽s	 
⟺ 𝑁s · 𝐿8A · 𝐿 · 𝐹 · 𝐿8A 	= 	𝑐 · 𝜇G · (𝐽s · 𝐿8A) 
⟺ 𝑁s′ · 𝐹′	 = 		𝑐 · 𝜇G · 𝐽s′ 



C40    Kosmetik am elektromagnetischen Feld 
 
 
In den Matrizen 𝐹 und 𝑀 erscheinen das elektrische und das magnetische Feld etwas asymmetrisch. Das liesse sich mit 
einer kleinen Änderung der Definition des elektrischen Feldes beheben und hätte allerhand weitere ästhetische Vorteile : 
 

• Das	elektrische	Feld	sei	neu	definiert	durch				Ε ∶= 𝐸/𝑐	
Die	Definition	des	magnetischen	Feldes	wird	beibehalten:			Β ∶= 𝐵	
Beide	Felder	haben	damit	dieselben	Einheiten,	nämlich	'Tesla'	
	

• Das	elektromagnetische	Feld	soll	neu	durch	die	beiden	Matrizen		Ϝ ∶= 𝐹/𝑐			und		Μ ∶= 𝑀/𝑐		beschrieben	
werden.	Damit	verschwindet	in	den	Matrizen	der	Faktor	𝑐	,	die	'Dualität'	der	beiden	Matrizen	tritt	besser	
zutage	:	

																						Ϝ	 = 	

0 ΕK Εv Εw
ΕK 0 Βw −Βv
Εv −Βw 0 Βw
Εw Βv −Βw 0

											und										Μ	 = 	

0 ΒK Βv Βw
ΒK 0 −Ew Εv
Βv Ew 0 −ΕK
Βw −Εv ΕK 0

			

	
• Der	Faktor	𝑐		verschwindet	auch	im	Kraftgesetz:				Κ	= q · Ϝ · U						statt	wie	bisher					𝐾	 = 	 Î

7
· 𝐹 · 𝑈	

	
• Bei	der	zweiten	Hälfte	der	8	Gleichungen	von	Maxwell	verschwindet	der	Faktor	𝑐	:	

Nð · F	 = 	 µG · Jð								statt	wie	bisher							𝑁s · 𝐹	 = 	𝑐 · 𝜇G · 𝐽s	
	

• Bei	den	Determinanten	von	F	und	M	verschwindet	ein	Faktor	𝑐F	:		
		𝑑𝑒𝑡(M) = 𝑑𝑒𝑡(F) = −(E · B)F										statt	wie	bisher					𝑑𝑒𝑡(𝑀) = 𝑑𝑒𝑡(𝐹) = −𝑐F · (𝐸 · 𝐵)F			
	

• Das	Produkt	der	beiden	Matrizen	F	und	M	wird	besonders	schön:	
F · M	 = 	 (E · B) · 𝐼𝑑q										statt	wie	bisher							𝐹 · 𝑀	 = 	 𝑐F · (𝐸 · 𝐵) · 𝐼𝑑q				
	

• Die	zweite	Invariante	des	elektromagnetischen	Feldes	erhält	auch	eine	symmetrische	Gestalt:	
EF − BF									statt	wie	bisher							𝐸F − 𝑐F · 𝐵F	
	

• Der	ganze	Satz	von	Transformationsgleichungen	für	das	elektromagnetische	Feld,	also	(25.1),	wird	neu	
symmetrisch	in		E		und		B			:		

 
Eõ′	 = 	 Eõ	 			Bõ′	 = 	Bõ

																											Eö′	 = 	 𝛾+ · (Eö − 𝛽 · B÷)	 																													Bö| = 𝛾+ · Bö + 𝛽 · E÷	
																										E÷′	 = 	 𝛾+ · (E÷ + 𝛽 · Bö) 																														B÷| = 	 γù · B÷ − 𝛽 · Eö	

	

 
• Für	die	Dreier-Kraft	𝑓		gilt	neu			𝑓 = 𝑞 · 𝑐 · E 	+ 	𝑢	×	B 	.	Jetzt	werden	beide	Feldvektoren	mit	einer	

Geschwindigkeit	multipliziert.	
 
 
All diese Vereinfachungen würden sich von selbst ergeben, wenn die Lichtgeschwindigkeit den einheitenlosen Wert 1 
hätte. Dies könnte man zum Beispiel dadurch erreichen, dass man als Längeneinheit die Lichtsekunde verwenden würde. 
Zeiten und Längen würden dann in Sekunden gemessen, und die Lichtgeschwindigkeit hätte den einheitenlosen Wert  
'1 Lichtsekunde pro Sekunde', also ein 'Licht'. 
 
Einen noch radikaleren Vorschlag hat schon vor langer Zeit Carl Friederich Gauss gemacht: Man solle die Einheiten für 
das elektrische und das magnetische Feld so festlegen, dass die Feldkonstanten 𝜀G  und  𝜇G beide den Wert 1 haben. Dann 
hätte die Lichtgeschwindigkeit ebenfalls den Wert 1, und die Feldkonstanten würden aus den Gleichungen von Maxwell 
verschwinden. 
 
Die neue Festlegung von  Ε ∶= 𝐸/𝑐  ist der harmloseste Eingriff, mit dem man die gewünschte Wirkung erzielen kann. 


