Special Relativity with Four-Vectors

This is no introduction to the Special Theory of Relativity. The reader should be familiar with the main concepts of that
theory as presented in any standard text book on that topic. A concise introduction called 'Fast Track' can be found on
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We will oftly refere to results proven in that "Fast Track". So [1 - 21.3] points to formula 21.3 and [1 - 3] to section 3
of that paper.

In addition, the reader should have some knowledge of matrix calculations.

The aim of this paper is to introduce four-vectors as a powerful tool to solve problems in STR. The sections Al to A1l
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product.
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A1l Four-Position X

The Lorentz transformations show how to calculate the coordinates (t',x',y',z") of an event in a reference frame S' from
the coordinates (t,x,y,z) of that event in the reference frame S and vice versa - supposed the reference frames S and S' are
in a special relationship: The x-axis and the x'-axis fall into one, and both of the y-axes and z-axes are parallel to each
other. Furthermore, the relative speed v of the reference frames is parallel to the x-axis: ¥ = (v, 0, 0) as seen from S.
Finally, the primary clocks in both systems, sitting at the origins of the frames, have both been resetted to zero at the
moment the origins of the systems met (see [1 - 20]). All the other clocks in the systems S and S' have been synchronized
with the primary clock of their frame.

The Lorentz transformations are given by the following set of equations [see 1 - 20.5] :

! x' , X
t =¥ t+ﬁv'? t=Vu'(t—ﬁu';)
x =y, - (x' +B,-c-t) X =y, (x —By,-c-t)
(1.1)
y=y Y=y
z = Z’ Z’ =z
1
.. v2\ 2 v
y and f are the well-known abbreviations y =Yy, = (1 _c_Z) and f=p0,= - (1.2)
Using the Lorentz matrix L the equations (1.1) can be expressed by a single matrix equation:
c-t 14 -y-B 0 0 c-t
x' _|-vB y 0 0} | x 13
y' 0 0 1 0 y (13)
z 0 0 0 1 z

Time is multiplied by the speed of light in order to have the same units for all four components of the vector. The vector
containing all four coordinates of an event is called the four-position of that event. X and X' are frequently used as
symbols for four-positions. Using these symbols and the name L for the Lorentz-matrix we can rewrite (1.3) as

X =L-X (1.4)
The inverse transformation is done using the inverse Matrix L™1:

X=LtX (1.5)
L™1 is almost identical to L , you just have to drop the minus signs.

Vectors that transform according to (1.4) when the inertial frame changes from S to S' are generally called four-vectors.

Four-position X is oftly writtenas X = (c-t, X¥). ¢ -t isthe temporal part, the 3d-vector ¥ is the spatial part of the
four-vector. A four-vector is always thought as a matrix with one column and four rows.



A2 Linear Combinations of Four-Vectors

Multiplication by any matrix is a linear mapping of vectors. Therefore, if X and Y are four-vectors, any linear
combination m-X + n-Y of X and Y isa four-vector, too, if m and n have the same value in all reference frames.

Hence, the difference X(t,) — X(t;) of two four-positions is another four-vector: AX = (c-At, AX)

Rest mass m, and rest charge density g, are invariant. We will use those constants to create important four-vectors
based on the four-velocity U: Four-momentum P is defined by P = m,, - U and the four-current / by ] = g, - U .



A3 Differentiating with Respect to Proper Time, Four-Velocity U

Differentiating the four-position X = (c-t, ¥) with respect to time t yields the vector (¢, i ). U is the ordinary
3d-velocity of some object in system S. But (¢, i) does not qualify as a four-vector. The first component does not
transform according to (1.3):

yc—y-f-u #* c
Insert % = (0,c/2,c/2) , for example.

Deriving with respect to time t cannot result in a four-vector, as time runs at a different speed in each coordinate frame.
But there is one distinguished coordinate frame with any moving object: The actual rest frame of that moving object, the
so-called eigen system or the comoving inertal frame. For all frames the following equation holds, where 7 is the time in
the comoving inertial frame :

At2—Ax? —Ay?—Az2 = At2—0—0—0 = At'? — Ax'2 — Ay'2 — Az 3.1)

The proper time interval At is a relativistic invariant. A proof of (3.1) is given by theorem (8.4) of that paper.
Hence, following A2 , the vector i - AX is a four-vector, too.

This holds for arbitrarily small time intervals At , and so it is true in the limit of At — 0. Deriving the four-position
with respect to proper time gives us the four-velocity U :

U=lim=2 =< (3.2)

(3.1) clearly shows that At is greater than At . Hence we have

u? dt
At = At- 1—C—2= At [y, and = = W (3.3)
Using the chain rule we can calculate the derivative with respect to 7 :
d d dt d d - ~
U=—X) = X7 = v 5K =y - t,x)=ry (u) (3.4)

U =1y, (c,u) is the four-velocity we were looking for.

The derivation of any four-vector with respect to proper time T produces another four-vector, and we know now how to
calculate this derivation.

The four-velocity U is sort of an artificial construct. It can not be measured, all we can measure is the traditional 3d-
velocity. But, as we will show, it is a great tool to do calculations in STR.

The proper velocity of some object in its eigen frame is always U = y, - (c ,6) =1-(c ,6) = (¢,0,0,0)T (3.5

The superscript character 7 indicates the transposition of the 1x4-row-matrix to a 4x1-column-matrix or a vector.



A4 Four-Momentum P

Following A2, multiplying four-velocity U by the rest mass m, we get another four-vector. That four-vector is called

four-momentum :
- 1 -
P=mgU=mg ¥ (c,id)= (3 Fee b) (4.1)

3d-vector p = y,, - my - U is the SRT momentum vector, and for the temporal part we have used the equation

— 2
Etot =Yu My -Cc™.

A5 Four-Current |

Multiplying four-velocity U by the charge density p, measured in the rest system of the charge we get the four-current

J = p,cU =p, v, (c) (5.1)

This representation is perfect for a cloud of charged particels who move all with velocity % in the same direction.
In a wire, only the electrons in the conduction band are moving, and total charge density in the wire is zero. Only a small

part of all charged particels contribute to the current. There we need the more general expression
] =(p-c, ) (5.2)

for the four-current. p is the charge density measured in the actual reference frame, and j is the 3d-vector of
current-density. j, - A, is the current [, in x-direction, when A, stands for the cross section of the wire orthogonal to

the x-axis and j, = p -u, gives the current density in that x-direction (— C32).

A6 Four-Force K

Following A3 the derivation of a four-vector with respect to proper time gives another four-vector. Deriving the four-
momentum P with respect to proper time we get the four-force K :

- 4 — a4 - .21 3) = . (L.8E dp
k= dr(P) - dt(P) dr 14 dt(P) 14 dt(c E.p)=v (c at ’ dt (6.1)
By definition we have % = f , with f denoting the ordinary 3d force vector. And for % we have by definition
dE 2 - — _)'d_f — _)' -
E—f-u—f ” or dE = f-dx (6.2)

So the four-force K can be written as

_Apy . (l.E By 1z oz
K=2P) =y 2,9 =yt fa, f) (6.3)

where E stands for the total energy E;,; . The character F will be used later to denote the Faraday matrix specifying

the electromagnetic field.



A7 Four-Acceleration A

The derivation of the four-velocity U with respect to proper time T gives us the four-acceleration
d d dt d d Sy 4.\ - d. =
A=ZW) = 2W)-5 = y-2W) = v (ci) =y (0 (cl) +y-2(ci))

So we have to derive y with respect to ¢ :

1 _ ~ 3 -
to =2 ]0-97 - £]0-97 - -2 e-97] (D a-reraa

a= Z—f is the 3d acceleration vector. So (7.1) can be developped to

&l=

d d = d, - 2 = s ~ o
A=E(U) =V'(5(V)'(C,u)+]/'5(c,u))=]/4-CZ-u-a-(c,u)+y2-(0,a)
By definition in SRT the equation K = m, - A is always true :
d d d
K=-—(F) =, U)=my-(U) = my-A

Combining (6.3) with (7.3) we get

1 dE dp 1 2 - 2 o - o N >
K=y (%, 2y =y Cofti, f) =mg- [y* - - (c) + v+ (0,d)]

A close inspection of (7.5) shows that force f and acceleration @ do not need to be parallel in STR !

(7.1)

(7.2)

(7.3)

(7.4)

(1.5)

(7.5) shows that if i and @ are parallel then f and d have to be parallel, too. In that case the temporal part of (7.5)

says
dE 7 - 3 - >
- = fu — y .mo.u.a

dt

and we have

f=vm-d

Hence the term 'longitudinal mass' for y3 - m, used around 1905 in papers on that topic.

(7.6)

If force f and velocity 7 are perpendicular to each other the first summand on the right side of (7.3) and (7.5) is zero.

Then from (7.5) we get the relation

il >

f=y me-a

(7.7)

The term y - m, was called 'transversal mass'. In that case the rate of change of energy % is zero. Think of a charged

particle moving in a magnetic field, when the only force acting on the particle is the Lorentz force.



A8 A Special Inner Product for Four-Vectors

The power of four-vectors as a tool for calculations in STR comes from a special inner product defined for four-vectors.
The result of this inner product is independent of the reference frame used to calculate the product, it is relativistically
invariant. So we can use in any situation the reference frame that makes the calculation as simple as possible.
Let X! and Y be two four-vectors with components x, to x; and y, to y,; . We define the inner product o by
XioY! = Xo-Yo— %Y1= X2V, — X3 V3 (8.1)
Obvously that inner product is commutative.
Let us look at two examples.
Let X! =(c-t, ¥) = (c-t,x,y,2)" be the four-position of some particle. Definition (8.1) says
XioXi = (c-t)? —x2—y%2—2% = (c-1)? (8.2)
Indeed, the result does not depend of the reference frame used to calculate it.

Let us do the same with four-velocity U' = y - (c,U) =y - (¢, Uy, uy, u,)" . We calculate Uo U':

. . 2
UteU' =y (e, =)y (e, i) = (P = (@ -ud) = g (P mu) = e (83)
ez

Again, the result does not depend of the choice of the reference frame.

Theorem: The value of the inner product X o Y of four-vectors does not depend of the reference frame (8.4)
used to do the calculation: X oY =X oY’

In order to give a proof of the theorem we will introduce a further mathematical tool in the next section: So called
four-forms.



A9 Four-Forms and the Inner Product

To each four-vector X! = (x,,%,,%,,%3)7 we define a corresponding four-form by
0 3

X = (xg,—x1, =X, —X3)

9.1)

A four-form is a matrix with one row and four columns, while a four-vector is represented by a matrix with one column

and four rows. Be aware or the position of the index i !

Using four-forms we can write the inner product of section A8 as an ordinary product of matrices:

Xo Yo Yo
S x yi | _ Y1 i
XtoY! = x; ° y; = X Yo~ X1 Y1 —Xp Y2 — X3 Y3 = (Xo, =Xy, =X, —X3) y, | = XY
X3 Y3 Y3

By the symmetry of our inner product we have

X.

4

YL = Xioyl = Yio Xt = lel

The last piece we need to give a very short proof of theorem (8.4) is the matrix G :

1 0 0 0
0o -1 0o o
=10 0o -1 o
0 0 0 -1

Simple calculations show that the following equations hold:

GT=6=6G"1, L''*=G1*L-G , L=G6*L7'6G6 , X,= ((G-XD) =x)H'-G

Four-vectors are defined to obey X v =L-X ¢ . But how to transform the corresponding four-forms ?
Using (9.5) we get from XY =L - X!

X=X -6 =(L-X)T-6 =) -LT-G

XHT-L-G =
=X G- GYHL-G=[X)'-G]l-[6G*L-G] =X;-L!
So four-forms are transformed from one reference frame to another by

XI:’ = Xi 'L_1 and Xi = Xi" L

Now we are well prepared for the short proof of theorem (8.4) :
XUoy! = X' -¥" = (X L) -(L-Y) = X - (L7 L) Y = XY= XoY!

g.e.d.

In section C37 we will introduce an important four-form in order to prepare the proof of another great theorem.

(9.2)

(9.3)

9.4)

(9.5)

(9.6)

(9.7)



A10 Some Selected Products of Four-Vectors

In section A8 we have calculated U o U. Now we will use theorem (8.4) to do that calculation. A particle with four-
velocity U = y - (¢, u) has the proper velocity U' =1 - (6,6), and so we have

UolU =UolU =1-(c,—0)"-1-(c,0) = ¢? (10.1)
In the eigen system of the particle the calculation is absolutely simple. Compare with the calculation in A8 .
Using (10.1) we find for the inner product of the four-momentum P = m, - U and the four-velocity U
PolU =(@my-U)olU =my-(UoU) = my-c? = E, (10.2)

and
PoP =(my-U)o(my-U) = mg?-(UolU) = my?-c? (10.3)

Now let A = % (U) be the four-acceleration of a particle with with the four-velocity U . In the eigen system of the

moving particle we have %' = 0 and U’ = 1-(c,0) . From that we get with (7.3) A’ =y2-(0,d") = 1-(0,d").
So we can calculate the inner product of A and U using theorem (8.4) :

AolU = A'oU" = (0,—-d)"-(c,0) = (0,0)= 0 (10.4)
Hence we have for the four-force

KolU = (mg-A)oU = my-(AoU) =my-0 = 0 (10.5)

For the four-acceleration A we have according to (7.3)

A=y*-c?2-4-d-(cd) +v?-(0,d)
The components are given by
A =y*.c2.4-d-c
At=y*-c?-U-a-u, + y*-a,
Az—y“-c‘z-zz-cz-uy+ Y -a,
A=y*-c?d-d-u, + y*-a,

and hence
AoA = (AO)Z _ (Al)Z _ (AZ)Z _ (A3)2 — VS 'C_4 . (ﬁ’d’)Z . [CZ _ux2 _uyZ _uZZ] —
2.y c2 @ @) [ugrartuyca, tu,a] — v [at+a+a?] =

— ]/8'(:_4'(17'(_1))2'[(:2—112] _ 2']/6'(:—2'(17'(‘1’)2_]/4'(12 —

2

— 8. =2 .(7.22 c?-
_y - C (ua) . CZ

— 2.]/6.(:_2.(17.&)2_]/4.(12 =
— ]/6-6_2-(17-&)2 _ 2']/6'6'_2'(17'(_1))2—]/4'(12 — —]/6-6_2-(17-&)2—]/4-612

The general result ist

AoA= —y®.-c2.-(U-a)*— y*- a? (10.6)



In the eigen system of the accelerated particle we have %' = 0 and y = 1. There, (10.6) reduces to
Ao A'= —a'? = —a? . The proper acceleration gets the symbol & (alpha). So (10.6) can be expanded to

A0A=—y6'C_2'(ﬁ'a)2—V4'a2=_a2 (10.7)

If % and d are perpendicular to each other (e.g. in a storage ring with a Lorentz force at work) (10.7) reduces to

2
a =y*-a and a=y -a=y2-u7 (10.8)

In a linear accelerator % and d are parallel to each other. Then (10.7) reduces to

a? = yS-c2-@-@)?+yt-a? =S ut-a? +yta? =

2

: VZ-’;—§+1) =yta? (5 -”—2+1) =

c2—y2 ¢2

(
— y4-a2-(2u2 +c2_u2) _ V4'a2'(020_2u2) —

=yt a2-y2 = yb.q
In that case the proper acceleration @ is
a=y3-d (10.9)
and (7.6) tells us
f=y3my-d =my @ (10.10)
If a centripetal force is at work we have, following (7.7) and (10.8)
f=v-m a=§-m0-a’ (10.11)



All Four-Momentum as a Conserved Quantity

The conservation laws for momentum and energy merge into one to the conservation law for four-momentum.

Conservation of four-momentum means
2P = Dh
i Jj

where the sum runs over all particles involved in a collision bevor (i) and after (j) that collision.
In A4 we noticed
1 -
P = (;'Ei,Pi)
The sum over the first components means total energy divided by the speed of light. So the conservation of the first
component of the four-momentum guarantees conservation of total energy.

The sum over the spatial components of four-momentum means total 3d momentum. The conservation of that sum
guarantees conservation of total 3d momentum. Be aware that § = y, - mg - U is the SRT momentum vector.

The second part of this paper brings a lot of examples, many of them illustrating the power of calculations with four-
vectors. Starting from conservation of four-momentum we will build inner products with selected four-vectors to
eliminate unknown variables. This may look as follows :

P+ P, =P +P = PioP,+ P,oP, = P;oP, + P,oP,

or

P+ P =P+P = (PL+ P)o(PL+ P) = (Ps + P)o(P3+ P)

For each inner product we are free then to choose the reference frame to do the calculation.



B12 Energy, Momentum and Rest Energy

As a theoretical application of four-vectors we give a proof of the well known equation
Ewi’ = E* + p?-c? (12.1)

(12.1) is true in every frame of reference.

Let P denote the four-momentum of some object in the reference frame S. We have P = (E,./c, P) . In the rest
frame of that object, i.e. in its co-moving inertial frame, the four-momentum of that object is

Py=1-my-(c, 6) = (E,/c, 6) . Now we calculate the inner products P o P and P, o P, and use theorem (8.4) :
o PoP = (E,/c)? — p? by the definition of the inner product
o PyoPy= (Ey/c)> —0 by the definition of the inner product

e both terms are equal, and hence  E,,,> — p?-c? = ¢2-(PoP) = c2-(PyoP) = E,° g.e.d.

B13 The Four-Momentum of Light Quanta

For light quanta alias photons withmy = 0 (12.1) reduces to  E;p,> = 0 + p?-c?.So we have
Eiqw=pC=Eyn=E (13.1)
For particles with speed ¢ we have p = E/c . The four-vector of a photon looks like

P=(E/c,p) =2-(1,1) = L. (1,1) (13.2)
If the photon runs in y-direction the unit vector 1 canbe writtenas 1 = (0,1,0).
For the four-momentum of light quanta we always have
pop="L.20.(1-1) = 0 (13.3)

In general we have P o P = (E,/c)? . For light particles with zero rest mass (they are really light ...) we get from that
(13.3) too.



B14 The Fast Observers Measurements
Let some object move with four-momentum P = ( E.,./c, B) = y - mg - (¢, ) in the reference frame S. For
somebody resting in S (observer A) we have

o Eg=y-my-c?=c-P°=UyoP with the proper velocity Uy = 1-(c,0)

o Ey=c-VPoP becauseof PoP = my?-c?

o Eyp= Etot_E0=U0°P_C'm

e my, =+VPoP /c

Now let the observer B move with velocity U in the frame S . That observer observes the same object as before in his
reference frame S'. What are the values observer B ascribes to the moving object ?

e E, and m; have the same values for B as they had for A. These values are invariant.
o Eo'=U)/oP =UoP where Uy = 1-(c,0) denotes the proper velocity of B in his frame §'

o Eu = Eo' —E, = UoP —c-/PoP

All of that values are easily calculated in both frames of reference.

h-f

What if the moving object is a photon ist ? Then we have P = (E,,/c, p) = - (1 ,T) with some unit vector 1 .

For both observers we have my =0 and E;, =0 ,and forboth E = E;;, = E;,; holds true. But the energy of the
photon differs for A and B:

For Awehave E = UpoP =1-(c,0)0"L (1,1) =c-P* = h-f
ForBwehave E' = UoP = Uy oP' = 1-(c,0 O%ﬂ' (1,1) = h-f'

in both cases the energy can be calculated with the inner product of four-vectors.



B15 Pair Annihilation 1

Let us look at a head-on collision of a electron and a positron. The particle and its anti-particle disappear and a pair of
quanta carries away momentum and energy. We write down the four-momenta of all particles in the center of mass
system of the incoming leptons :

A the four-momentum of the electron : A=y -my-(c,?)
B the four-momentum of the positron : B=y-my-(c,—V)
In the center of mass system total 3d momentum is zero before the collision. So total momentum has to be zero after the

collision, too. Hence the necessity of two photons heading away after the collision with equal energies in opposite
directions :

s
<

C  the four-momentum of one of the photons: C = - (1 ,T)

|

D  the four-momentum of the other photon: D hTf - (1, —T)

The argument above is based on the conservation of the spatial components of four-momentum
A+B=C+D
The temporal component, i.e. conservation of energy, yields
2:y-myg-c =2-h-f/c
and hence

hef =y-my-c?

The direction of flight of the photons is unknown.



B16 Pair Annihilation 2

Now let a fast positron hit an electron at rest in some reference frame S. We know from B15 that two quanta are created.
Their 3d momenta carry on the 3d momentum of the incoming positron. In this section we are going to calculate the
energies (or the frequencies) of the quanta in a special case: Both quanta should move along the line of the incoming
positron :

b
<
\
(.

%
before ¢ O | = O]

Q‘RUUW(!S ¥s «frn A
bt hf,

We do that calculation in a reference frame T that moves with 'half of the speed' of v in the direction of v (for that 'half
speed' w consult [1 - 3] ). In that reference frame T we are back in the situation of B15 ! Both quanta have the same
frequency f' with

Using formula [1 - 1.4] for the longitudinal Doppler shift we can calculate the corresponding frequencies in frame S :

hefi = hef [ mmgect (1-2)F (14) 5 (142) % (1) =yt
and 1 1 1 1 (16.2)
hef, =h-f %=mo'cz-(1—%)_5-(1+§)_5-(1—§)+5-(1+§)_5=mo e

It is not easy to show that energy conservation is guaranteed with (16.2). I am thankful to Mathematica® to do that
calculation for me ... So the following equation is correct :

h-fi +h-f, =7y, -mg-c® 4+ mgy-c?

[2 - 29.44] gives solutions to this problems that look rather complicated. By means of the 'half speed' w many problems
can be solved with a minimal mathematical effort.



B17 Pair Annihilation 3

We are back again in the situation of B16. But now, the quantas are allowed to fly off in any direction in frame T :

il

System T is moving to the right with speed w as seen from S . So the upper quant moves towards the observer resting in
S and hence has the increased frequency f; > f in frame S, while the quant below has its frequency Doppler shifted to
fz < fi . We use the general Doppler formula [1 - 22.1] :

1
) w
Yw (1= cosp)

fs = fr

For fr we have to insert f' from section B16 . We get the increased frequency f; if we insert ', and we get the lower
frequency f, if we insert 180° — a’ for ¢ :

Rfi =h-f ; : 1 my - ¢
! yw-(1—¥-cos(a’)) v yw-(1—¥-cos(a’)) 1—¥'COS((X’)
, 1 5 1 mgy - c?
hef, =h-f —y, g c?-

yw-(1—¥-cos(180°—a’)) yw-(1+¥-cos(a’)) B 1+%'COS((X’)

With a' = 0° and cos(a’) = 1 we get the results of the last section B16 .
Again, using the 'half speed’ w simplifies the calculation and gives a quite handsome result.

In system S both of the angles @ and B are smaller compared to @’ resp. 180° — a’ . @ and B can be calculated with the
aberration formula [1-22.3] :

c—w c—w 180°—ar
tan ——
ctw 2

tan £ = ctan < and tan E _
2 2 2

ct+w

The 3d momenta of the quanta have to catch the 3d momentum of the incoming positron.



B18 Pair Annihilation 4

One more time we are back in the situation of B16. Now a detector catches only quanta that fly off at a right angle to the
direction of the incoming positron :

hf
v ﬁ
et LN EMEEE SR
X
nf,
bg’fcmf‘

We will calculate the energies of both of the quanta and the angle ¢ in the figure above. Let us list the four-momenta of
all of the involved particles :

e P =vy,-my-(c,v,0,0) the four-momentum of the incoming positron

°
NS
|

=my-(c,0,0,0) the four-momentum of the electron atrestin S

[ ]
<o
I
|

}: +f1-(1,0,-1,0) the four-momentum of the quantum catched by the detector

(=

e P = . f5 - (1,cos(e),sin(p),0) the four-momentum of the other quantum

Conservation of four-momentum means P; + P, = P; + P, . The first three components of that vector equation
yield three equations for the unknown variables f; , f, and ¢ :

h h
* Yy My C+ my-Cc = ;'f1 + ;'fz
multiplied by ¢ we get (no surprise) E, + E, = E; + E, (18.1)

e y, myv+0 =0+ %-fz-cos((p)
multiplied by ¢ we get E; % = E,-cos(p) (18.2)

h h )
© 0 =2 (1) + 2 fysin(e)
multiplied by ¢ we get E; = E,-sin(p) (18.3)

In a first step we get rid off the angle ¢ by adding the squares of the equations (18.2) and (18.3) :
2
E,? :_2 + E2 = E2 - (sin?(@) + cos?(@)) = E,° or  E’—E®=E*= (18.4)
Now we multiply (18.1) by E, — E; and use (18.4) to get

(E1 + Ez) ' (E4 - Es) = (Es + E4) ' (E4 - Es) = E42 - Es2 = E12 = (18.5)



Dividing (18.5) by (E; + E,) we get E, — By = —= (18.6)
1 2
(18.1) still says E, + E; = E, + E, (18.7)
512~é
Adding (18.6) and (18.7) we find 2-E, = E, + E; + - +£ (18.8)
1 2
2
:—2 can be expressed by the energies E; and E, as follows :
v? 1 B2 v? 1 Ey? E%- Ep°
1—C—2=y—2=EL12 and hence C—2=1—y—2=1—$=1£—122 (18.9)
Inserting (18.9) in (18.8) we get
E1? Ei2—Ey°
2-E, =E, +E, + . — =FE, + E, +E, — E, =2"E (18.10)
Eq+E; Eq
Together with (18.7) we find finally E, = E; and E; = E, (18.11)
The angle ¢ can be calculated by
_ Pix _ YMoV _ YMoV _ YMeV _ V _ _ ELZ
cos(p) = = he = Bye —ymee ¢ = 1 52 (18.12)

All solutions are given in terms using the energies E; and E, only. The solutions (18.11) and (18.12) are rather simpel,
and they clearly satisfy the equations (18.1) to (18.3). Let me write down the solutions once again :

e h-fi =E; =E, =my-c?

Ey =y, -mg-c?

E,

° hf2

Ep? 1
o cos(p) =7 = /1—EL12= 1- %

Measuring f; and ¢ allows to calculate the energy of the incoming positron.



B19 Pair Creation

A high energy quantum can not decay into an electron-positron-pair without the presence of another particle. In the
center of mass frame of the created particles total momentum would be zero, while the momentum of the incoming
quantum is not zero in any frame of reference. Only the presence of another particle, usually the kernel of an atom,
allows that process to take place. Good luck for the astronomers: The quanta are forbidden to decay spontaneously in
empty space, most of them travel unchanged over 'astronomical' distances.

In the rest frame of the involved kernel we have

e P = kS, (1,1,0,0) thefour-momentum of the incoming quant
c
e P=(M-c,0,0,0) the four-momentum of the kernel
e P the four-momentum of the cluster containing the new particles and the kernel after that the

pair creation took place

(it is impossible to calculate the single momenta of all of the three particles after the pair-creation without further
informations).

Conservation of four-momentum means
P+ P, =P
The square of this equation is
PioP, +2-PioP,+ P,oP, = Pjo P, (19.1)
P, o P, equals zero, P, o P, equals (M -¢)? and P, o P, resultsin h- f - M . We calculate the square of P; in the
rest frame of the cluster. There we have (the kernel being much heavier than the created leptons)
Py~ ((M+2-my)-c,0,0,0) andhence P3oP; = Py'oPy' ~ (M+2-my)?-c?.
Inserting these terms in (19.1) we get
0+2-h-fM+ (M-c)®> =~(M+2-my)?-c?

expanded

2-h-f M+ M?>-c? ~ M>-c2 + 4-M-my-c® + 4-my?- c?

and simplified
hef ~2-me-c® +2-mg2-c2/M = 2-mg-c?- (1+72) (19.2)

The result shows again that without the presence of that kernel, i.e. with M = 0 , the input energy would go to infinity,
and the pair creation could not take place. If, instead of a kernel, the involved particle is an electron the energy of the
incoming quant has to be at least twice the rest energy of the created particles.



B20 The Perfectly Inelastic Collision

Let two particles with rest mass m, and m, move along the x-direction in system S with velocities #, = (u,,0, 0)
and U, = (u,,0, 0) . After a completely inelastic collision they build a single new particle. We want to calculate the
rest mass m, and the velocity %, = (u.,0, 0) of that new particle in system S.

Conservation of four-momentum means P, + P, = P, . Squared we have

PyoP,+2-P,oP,+P,oP, = PoP,

The square terms are calculated in the rest frame of the particle. So we get

mg2-c? + 2y, -mg-(c,ug,0,0)ey,-my-(c,u,,0,0) +my?-c> = m2-c
Dividing by ¢? and calculating P, o P, we find
(c? —ug - up)
ma2+2'ya'ma'yb'mb'c—2a ‘m'bz_‘m'c2
rearranged
2 2 2 Ua " Up (20.1)
m =m, + my° + 2-my-my- ya-yb-(l— p ) .

Let us compare (20.1) with
(mg +mp)? = my° + my? + 2-mg, -my

In (20.1) we have the additional factor

If the signs u, and u,, differ, i.e. if the particles collide with opposite velocities, all three factors of k are greater than 1
and m, is greater than m, + m,, . If one of the velocities equals zero the third factor disappears, one of the first two
factors equals 1 and the other is greater than 1. With some algebra we could show that k is greater than 1 in the last case
too, where u, and u;, have the same sign. The rest mass of the new particle is always greater than the sum of the rest
masses of the colliding particles. There is always some part of kinetic energy of the colliding particles that is converted
into rest mass of the new particle.

What about the velocity u, of the new particle ?
Conservation of energy, i.e. the temporal part of conservation of four-momentum, says

Yo Mg C> + vy, -my-c? =y, -m-c? (20.2)

Conservation of 3d momentum, i.e. the spatial part of conservation of four-momentum, yields
Ya Mg Uqg +Vp My Up = Ve MU (20.3)

Dividing (20.2) by ¢? we get an expression for y, - m, . Dividing (20.3) by that term we get

_Va'ma'ua+yb'mb'ub

(20.4)
Yo Mg + Vp My

(o

u. is the velocity of the center of mass of the particles - before and after the collision.



B21 The Perfectly Elastic Collision 1

Let a particle with rest mass m and velocity u = u, collide with a particle with mass M at rest. The collision does not
need to be head-on :

Vvorler 3
€
u = A
0 — g
m e
r/

ot e R_@ _'

Given the velocity u , the ratio m/M of the masses and the angle a between W and the x-axis we will calculate the
velocities of the particles after the collision.

Let us start with the conservation of four-momentum : P+Q=R+S where (21.1)
P=vy,-m-(cu0,0) for the pushing particle with mass m before the collision

Q= M- (c0,0,0) for the resting particle with mass M before the collision

R=vy, M- (c,w-cos(a),w-sin(a),0) for the pushed particle after the collision
S=y,.-m-(cr-cos(a)r-sin(a),0) for the pushing particle after the collision

Squaring (21.1) we get PoP 4+ 2-PoQ 4+ QoQ =RoR+ 2-RoS + SoS§ (21.2)

From PoP =SoS5 and Qe Q =RoR follows PoQ = RoS.Nowwe multiply (21.1) by R :

PoR +QoR = RoR + SoR=RoR +PoQ (21.3)
We have eliminated S and can calculate w now. Inserting the terms
PoR=vy, ¥y m-M-(c>?—u-w-cos(a)), QeR =1y, -M?*c?>, RoR=M?c* and PoQ =y, -m-M:c?

in (21.3) we get a linear equation for w with the solution

2-(1+%-%)-u-cos(0{)
W= b (21.4)
—_ 2., 2
(1+m Vu) + u? - cos?(a)

1
From w and a we get wy=w-cos(a@) , wy=w-sin(a) and y,=10-w?"2 (21.5)



The first component of (21.1), i.e. the conservation of energy, says y, -m-c +M-c =y, -M-c +y.-m-c
Solving for y,. we find

M M 1
yr=yu+a—a-yw and hence 1= 1_F (21.6)

From conservation of momentum, i.e. from the second and the third component of (21.1), we get equations for the
components of velocity r and the angle f :

M
Yy -m-u = Yr'm'rx-l_)/w'M'Wx - rx=()/u'u_yw'%'wx)/yr

M
0=y, m-n+y, M -w, - ry=(—yw-a-wy)/yr (21.7)
By choice w,, has a positive sign, and hence the sign of 7, is negative while the sign of 7, can have either value.
Finally, £ is given by
B = sin~(r /1) (21.8)
If you like to play with different values of u, M/m and a you can do so using my GeoGebra program written for this

situation. The input parameters are adjusted with sliders, and the program shows visually and numerically the result of
the collision : https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss _1.ggb




B22 The Perfectly Elastic Collision 2

This section presents another solution for the problem of B21 (look at the figure at the beginning of B21). This time we
do the calculations in the center of mass system S' of the two particles :

VOr{Mf =

@ — @ !
" M

!

g
N

nadi W:

2

4

Let v be the velocity of S'as seen from S. The particle M , resting in S, moves in S' with velocity —v in the direction of
the x-axis. In S', total momentum is zero before and after the collision. The particles necessarily have to move in opposite
directions after the collision. Conservation of momentum and conservation of energy imply

Wl =]-v] und |7'|= | (22.1)

The velocity v of S' asseen from S can be calculated with formula [1 - 7.1] :

. c? meu-c?
- ptz'twt - Yu y:n 2+ M-c? Yu +VX/I/m T (222)
So we know v and vy, .
To be able to calculate tEE velocities w' and 1’ after the collision we need to know u , M/m and the angle ¢'.
@' is the angle between 1’ and the positive x-axis. ¢’ may be obtuseif m < M .
Following (22.1) we have r'=u , n' =u-cos(p’) and n’' = —u'-sin(e’) (22.3)
and w=v, w' =-v-cos(¢) and w, = v-sin(e) (22.4)

These are the results in system S'. With formulas [1 - 22.1] and [1 - 22.2] we will calculate the corresponding velocities
in system S.



We find

' +v 7,

=, 7= A and 1= [n?+4rn? (22.5)
1+v-n'/c? Yo L4+v-1,//c?)
and
w, +v w,’
= — , = and = 2+ 2 .
T T v w e Y A v w ) WEW Wy (22.6)
X v X

Finally we have to calculate the angles o and 8 between the velocities and the x-axis in System S. This can be done in
many ways. Our choice is

a =tan"'(wy/w,) = cos~'(w,/w) and B =cos~!(r/r) (22.7)
I have written another GeoGebra program to match exactly the situation in this section. You can adjust u , M /m and ¢’

with sliders and then watch the result of the corresponding collision.
The link to this little program is https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss_2.ggb




B23 Compton Scattering

Let us study the elastic collision of a photon with a free electron at rest :

vorler naciher
e
h-f
RSS9 P 7 -
hi . hf'
hef

Before the collision we have the four-momenta P = - (1,1,0,0) and Q =my-(c,0,0,0)

After the collision we have R=%'(1,C05(p,sin(p,0) and Q' =7y, -my-(c,i)

The starting point is, as usual, the conservation of four-momentum P+Q=R+Q (23.1)
Squared PoP +2-QoP +QcQ =RoR+2-QoR+ Q-0

and hence 04+2:QoP+QoQ =0+4+2-Q R+ Q°Q and QoP = Q'R (23.2)
Multiplying (23.1) by P’ and inserting (23.2) we find PoR + QoR = RoR + Q'oR =0 4+ QoP (23.3)

We got rid off Q' ! The remaining inner products of (23.3) are

= Rt . =X F.F.(1-
e PoR = i (1—rcos ¢) Py (1 —cos ¢) = E-E" - (1—cos @)
hef! h 1 ,
° QoR:mO-C-C =m0'C'?=C_2'mO'C2'E
hef h 1
* QeP=my-c-— =my-c-3= 5-my-c’E
. . h h h h
Inserting these terms in (23.3) I-?-(l—cosq)) tmycop =myecy
multiplying by % h-(1—cos¢@) + my-c-A2 =my-c- A
and rearranging the terms h-(1—=cosp) =my-c-A—=2)
we find the Compton scattering formula A—1= mLC-(l —cos @) (23.4)
o

mLC ~ 2.426 picometer is called the Compton Wavelength of the electron.
.

On the next page we calculate the energy E' = h - f' of the scattered photon in terms of the energy of the incoming
photon and the scattering angle ¢ .



Let us rewrite (23.3) using the energy terms instead of wavelengths :

1
_.mO.CZ.E

1
_.mO.CZ.E’ = >

1 ’

C—Z-E-E (1 —cos @) + >

Multiplyied by ¢? and slightly rearranged
E'-(E-(1—cos¢) + my-c?) = my-c*-E

and solved for E’ we find

Jj mO'CZ'E !
E=E(1 cos @) + m szE' E
. —_— 0' . —_—
1+m0'C2 (1 —cos ¢)
or, equivalently

fo= my ¢ hf =f -
hef-(=cos@) + mo-c? ~ 7 ) | R g oo

mg - c?

m

2
OTC ~ 1.236 - 10%° Hz should then be called the Compton frequency of the electron.

(23.5)

(23.6)

(23.7)

(23.4) and (23.6) both show that the energy of the scattered photon is always smaller than the energy of the infalling

photon. Of course this is a basic consequence of conservation of energy. In addition, (23.6) shows

E > E !
= =7 2-E
1+ ——=
my:-C

An exact derivation of (23.4) without four-vectors is possible, but laborious. Compare e.g.
https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_03.pdf




B24 Inverse Compton Scattering

A photon can gain much energy by an elastic head-on collision with a fast electron :

ht v
vorke : AP I—06
h- £ v'
nadkler = b 0 o s -—_— =
The following four-vectors are used in the calculation :
e P = hTf -(1,-1,0,0) for the photon before the collision
e Q=vy,-my-(c,v,0,0) for the electron before the collision
e R = hTf’ -(1,1,0,0) for the photon after the collision
e S=vy, my-(c,v,0,0) for the electron after the collision
As usual we start with conservation of four-momentum : P+Q=R+S (24.1)
squared PoP +2-PoQ +QoQ =RoR +2-RoS 4+ S0S§
and evaluated 0+2:-PoQ +my?-c> =0+ 2-RoS + my?-c?
Hence we have PoQ = RoS (24.2)
Multiplying (24.1) by R PoR + QoR = RoR +SoR =0+ Po(Q
we get PoR + QoR = Po(Q (24.3)

We have eliminated the unknown four-momentum S. Now we calculate the inner products :

e Por="L2 . (14+1-0-0) =222 X

c c

hef'
L] Q°R=R°Q=_f']/,,'mo'((l—v)

c

h-
° PoQ:Tf'Vv'mo'(C+v)

inserted in (24.3) Z-hCi-h'Cf + h'cf Yy My (c—v) = hci-y,,-mo-(c+v)
and divided by ¥, - m, ynfcz-h-f-h-f'+h-f'-(1—§)=h-f-(1+g)z2-h-f (24.4)
v'Ito®

For very fast electrons we have v = ¢ . Then we may replace (1 + %) by the number 2 to simplify the calculation.
Dividing (24.4) by 2 we get

(e 2 (1-9) = 0

Yvmo-c?



h.f’: =y.m0.C2. =
I S N S . Y (c—=v) Yp-mg-c?
Yy - Mg - C2 h-f +3 (1 C) L+ == h-f
— 2 1
_y]] mO Cc 1+(C—v)-]/v'm0'/1 (24.5)
2-h

For v =~ ¢ we have in good *) approximation ¥, - (c —v) = ¢/(2 - y,) . This simplifies (24.5) to

I — o . e
E'=h-f Yo Mg - C Cmg A (24.6)

Let us calculate an example value for y, = 10'000 and 2 = 500 nm :

c-mg-A 3-108-9.1-10731.5.1077
4.y, h 8-105-6.6- 10734

~ 0.517

and hence

E'~ ——-10'000 -mq - ¢ ~ 6'592-mq - c? ~ 6'592-511keV ~ 3.37 MeV

1.517

With increasing energy of the pushing electron the fraction of energy that goes to the photon increases too. In that way
quanta with very high energies are created.

Yo E'/(mgy-c?)
10 0.019
100 5.27
1'000 162
10'000 6592
100'000 95'084
*)
1-2 1-2 W=
1 1 v “c c c—v
Yo (c—v)= : -c-(l—z)=c- ~ C- NG =vc- NG}
1-2 142 142 2 2
c c c
= NG c—v
c—v
\/Eyv VE—V
c c
= c—V = and Yo (c—v) =



B25 Bremsstrahlung

An electron is accelerated in a vacuum tube by a tension of some ten kilovolts. When its flight ends on the metallic anode
plate a great part of its kinetic energy is set free in form of an X-ray quantum. Before the collision we have a fast electron
and a heavy atom at rest. After the collision we have the pushed atom, the electron and the high energy quantum. The
atom and the electron go into the calculation as a single cluster :

So we have the four-vectors

(&)
. P =y, -my-(c,v,0,0) the electron before the collision
l Q=1-M:(c,0,0,0) the atom before the collision

e R=vy, - (M+mg)- (c,u,,uy,,0) theatom and the electron
after the collision

. S=hjf-(1,0,1,0) the X-ray quantum

Once again the conservation of four-momentum :

P+Q=R+S (25.1)
And squared :

PoP +2-PoQ + QoQ = RoR + 2-RoS + SoS  (252)

We have 6 inner products: PoP =my2-¢? ; QoQ = M?-¢2 ; RoR=(M+my)?-c? ; S05=0;
h.
PoQ: yv'mO'M'CZ ;RoS:yu-(M+m0).Tf.(C_uy) .
Inserted in (25.2)

me?-c?+2-y, -my-M-c?+M?-c2=(M?+2-M-my+my?) -CZ+2-yu-(M+m0)-hci-(c—uy)

simplified 29, mg-M-c? = 2-M-mg-c?+2-y, - (M+mg)-h-f-(1-2)
: 2 Uy
again (=D mg-M-c? = y,-(M4+me)-h-f-(1-2)
1) -mu-c2.—" ¢ _p.
and finally y— 1) -my-c v R—, h-f (25.3)
If the anode is made from molybdenum e.g. we have ~ 5999 The factor comes very close to 1.
M+mg 175001 M+mg

Further we have u, <u < ¢, v, andthe factor c¢/(c —u,) are only a little bit greater than 1. The less energy is

absorbed by the atom the smaller is the difference of those factors to 1 . So, as an upper limit for the energy of the X-ray
quantum, we find
h-f < (Vv_l)'mo'cz = Epin

The result is far from being a surprise: The maximum energy of the quantum is 100% of the kinetic energy of the
electron. We might have predicted that result right from the beginning :

h- fomax = Exin = U-e

Crystal structures are analyzed by diffractometers at tensions of 20 to 40 kilovolts, corresponding to X-ray wavelengths
of one or a half Angstrom.



C26 Lorentz Force as a Four-Vector

Maxwell's theory of electromagnetism is perfectly compatible with STR. So we may expect the Lorentz force law to be
valid in STR, too: f = q- (E + U X §) . Basically, this force law gives the definition of the electric and the magnetic
field vectors. Neglecting gravity, the total force acting on a charged particle consists of Coulomb force and Lorentz force.

(6.3) tells us how to define the corresponding four-force:

=

‘E-%, E+1xB) (26.1)

1 dE dp 1 2 - 2
K=y (o5 2)=v G fa fH=va-(

Q|

The magnetic field is not involved in changing the particles energy: o X B and U are always perpendicular to each
other,andso f -4 =q-(§ + U X §)z'i =q-E-U.

K can be written as the product of a matrix F' and the four-velocity U :

0 E, E, E, c

P I L T DOV (26.2)
c | E, —c-B, 0 ¢ B, Uy
E, ¢-B, —c-B, 0 Uz

The matrix is named F in honor of Michael Faraday. F is the SRT standard description of the electromagnetic field.
Using the symbol F we can rewrite the Lorentz force law as

F-U (26.3)

K and U are four-vectors. In another frame S' they are givenby K' =L-K and U' =L -U .Itis easy to find the

matrix F' with

K' =Q'F"U’
Cc

We multiply (26.3) from the left side with our matrix L from Al and we get

L-K = %-L-F-U = %.L.F.L—l.L.U
and hence
K=LK=%@r1n0u=2rpu
The matrix F' is givenby F' =L -F-L71. (26.4)

If F is the description of some electromagnetic field in sytem S then F' =L - F - L™ is the description of the same
electromagnetic field in a system S', that moves with speed v relative to S in positive x-direction. In the next section we
will calculate the corresponding transformations of the single components of the electric and the magnetic field vectors.



C27 The Transformation of the Electromagnetic Field Vectors

Following equation (26.4) we just have to calculate L - F - L™ to get the components of F’:

0 E B E y =B 00
) E, 0 c-B, —c-B, —y-B % 00
With F = E, —c-B, 0 B, and L = 0 0 1 0
E, c¢cB, —c-B 0 0 0 01
we find
0 Ex Vv'(Ey_v'Bz) Vv'(Ez-l_v'By)
v v
Ex 0 C'Vv'(Bz_C_z'Ey) _C'Vv'(By_C_z'Ez)
[ v
Vv'(Ey_v'Bz) _C'Vv'(Bz_C_z'Ey) 0 C'Bx
v
Vv'(Ez-l_v'By) C'Vv'(By_C_z'Ez) _C'Bx 0
Hence we have
Ex’=Ex Bx’=Bx
’ , v
Ey =Vv'(Ey_v'Bz) By=yv'(By+C_2'Ez) (27.1)
’ , v
Ez =yv'(Ez+v'By) Bz=yv'(Bz_C_2'Ey)

To find the reverse transformation we have to replace v by —v and, by that, L by L™! . Doing so the plus and minus
signs in the second and third row of (27.1) are exchanged.

In STR, the electric and the magnetic field are united to a single electromagnetic field. A pure eletric field in system S
shows up as a mixed electric and magnetic field in system S'. With that, Einstein got rid of the 'asymmetries' he is
complaining about in the first sentence of his famous 1905 paper "Zur Elektrodynamik bewegter Korper": "Dass die
Elektrodynamik Maxwells - wie dieselbe gegenwartig aufgefasst zu werden pflegt - zu Asymmetrien fiihrt, welche den
Phénomenen nicht anzuhaften scheinen, ist bekannt."



C28 Force and Acceleration in a Storage Ring

In the laboratory frame S a particle with positive charge q is
Az caught in a storage ring. The only non-zero component of the
X 1 electromagnetic field is B, = —B. The Lorentz force keeps the
particle on its circular trajectory :

Force and acceleration are perpendicular to the speed ¥ , so we
can use (7.7) and write

f= Vv'mo'a

> . _ qvB

hence a=(0,a,,0) with a,= —— (28.1)
2 RS

With @, == we further find B =2""0=2 (28.2)
r qr qr

In the CERN laboratories near Geneva protons are accelerated up to 299'780'455 m/s (the speed of light is 299'792'458
m/s). They are kept in a storage ring with a diameter of 4243 m. Thus, y,, = 111.75, and the strength of the field B
needed to keep them on track is by a factor 112 greater than non-STR calculation would suggest. Instead of some milli-
Teslas the field strength created by superconducting magnets goes up to 8.3 Tesla.

We recalculate a,, in the laboratory system using the formalism of four-vectors. With (7.5) we have

0 0 0 0 c 0 0 0

ey, o 0 s oo\ (v\_ e o \_[ o \_, . .|«
K_c FU=v c \0 ¢-B 0 0 o)~ elvcn|™ Y»-V:q-B =Mo"V a,
0 0 0 0 0 0 0 a,

and we again find the result (28.1) .

A third calculation is done in the system S' of the moving particle, in its actual comoving inertial frame. There, the
particles four-velocity is U’ = (c,u) = (c, 0,0,0) and, following (10.8), its proper acceleration is
A =y, (0,a,, ay,a,) . We get the same result by the matrix multiplication A"'=L-A:

Yy -—y-B 00 0 0 0 0
—y. 0 0 ay ax
A’_ 14 B 14 0 0 . = = 2 =1 !
0 0o 1 0o/ \na) \nalT g ay
0 0 0 1 0 0 a,’ a,’
Sowefind A'=A4 and d' =vy,2%-d= (O,V”'ZI—VB,O) (28.3)
0
K'=my-A=my-A=K and(7.7)induce f' =my-y, @ =mg-1-@' =my-1,2-d =7v,-f (28.4)

We do the calculation one more time in system S', but now we will use the formulas (27.1) for the transformations of the
electromagnetic field :

t
|

v
S =y (Ey—v-B)=y, v-B By=v,(By+E)=0

I , v
Ez =Vv'(Ez+v'By)=0 Bz=yv'(Bz_C_2'Ey)=_yv'B



We find
fl=q-(E +tixB)=q-(E+0xB)=q-(0,7,-v-B,0)=mg -y, -d =mgy-1-d

and finally again =02 _ 2.4 (28.3) = (28.5)

mo

If a central force is at work we always have f' =mgy @ =mg-v,2-d= ¥, (¥p -Mo-4) =V, f ,and in the eigen
system of the moving particle we have

-d and f=v,-f (28.6)
The general explanation is given with

=4 =4 -2 A, L =y -
fy - dtr (py ) - dr (py) - dt (py) dr =W dt (py) =W fy
Similarly we have
r_d(dyy_d(dy aty_d(  dyy_ 4 dyy_ .  d(dy) dt _ 2.1(‘*_3’)= 2.
Ay = dr(dr) dr (dt dr) dr (V,, dt) s (dt) W (dt) e P a\a Yo"y
If the force is perpendicular to velocity, y,, is a constant term and thus does not influence the differentiation with respect
to time.

So much for the special case of forces perpendicular to velocity. The other special case with f parallel to ¥ is treated in
the next section.



C29 Force and Acceleration in a Linear Accelerator
A particle with rest mass m,, and charge q gets accelerated along the x-direction in laboratory system S by a constant
electric field E = E, . There is no magnetic field at work in frame S .

Following (7.6) we have

and hence

resulting in

3
q- Ex v\ 2
e Sdt = (1— C—2> ~dv (29.1)
By integration ( Bronstein integral Nr. 178 ) we get
- E vz 2
T vc = v-(l—c—2> (29.2)
0

The constant term C disappears if the speed is zero at time t = 0 . Solving (29.2) for v with € =0 we get

Q'Ex,

In the beginning we have a linear growth in velocity as we would have in classical physics. Then, the denominator slows
down the increase of speed more and more, and in the limit of t — oo the speed approaches the speed of light ¢ :

v(t) =

(29.3)

.9 Ex c- q- Ex
lim o = ™ - ¢
= = (29.4)

o c? q'Ex2 Q'Exz
Tt (m—o) (m—o)

To get (29.4) we did multiply nominator and denominator of (29.3) by ¢/t .

What would be the description of this process in the comoving frame S' of the accelerated particle ? In each moment we
haveinS' E,' = E., E,/ =0, E,/ =0, B'=B,=0, B/ =0 and B,’ =0.Inany instant we have
the very same situation as in system S , the equations (29.1) and (29.2) are valid in S'.

Let us study the same situation again in the laboratory frame S , but now using four-vectors.

-

and ¥ =9(t) = (v(t),0,0).The vectors f, ¥ and @ are parallel to each
+ X

Wehave E = (E,,0,0),B =
q- ¥ x B)=q-(E,,0,0) and f-#=q-v-E, .Insertingall thatin

0
other. Further we have f = (E
equation (7.5) we get



1
12 1 4.2y,
z'f'v yz v.Ex y c v ax
1
K=y fx = Y q- Ex =my-A=mg- y4-C—2-v2-ax+y2-ax (29.5)
fy 0 0
. 0 :

From (29.5) we get two equations: One for the temporal components and one for the first spatial components. The
temporal equation, a little bit simplified, is

and we are back to (29.1) and (7.6). The spatial equation is

1
=

vz
fx=Q'Ex=m0'V3 vz-ax+y-ax=m0-y3-ax-(c—2+y‘2)

2
The left sides of both equations are identical, so the factor (:—2 + y‘z) has to be equal to 1 :

v: v v?
C—2+]/ =C_2+ 1—C—2 =1

We got the same equation twice for a, .



C30 The Cylindrical Conductor 1

Let a current I flow in a long cylindrical wire. The wire is at rest in the laboratory frame S, it's cross section has radius r
and the mean drift velocity of the electrons is v . If n stands for the number of electrons per unit volume in the
conduction band our variables are connected by

I =n-er?>mv (30.1)

Outside the wire, there is no force acting on a charged particle at rest, the electrical field is zero. However, we have a
magnetic field. Its lines of force are concentric circles as depicted in green in the following figure :

o

b y
1 '
l 1
W S S B ‘>>< /4
il v ‘' d
| ! I
| f , {
¢ v
O— 3

The current flows from the right to the left, the electrons are drifting with speed v from left to the right. The symmetry of
the magnetic field reflects the symmetry of the conductor and the current.

For the strength of the magnetic field in distance d to the center of the wire we find with Ampére's law and (30.1)

B =ﬂ._=&.%.n.e.r2.n.v (302)

For a charged particle in distance d to the center of the wire, that moves with the same speed v as the electrons in the
x-direction we have

f=q @BxB)=f = q-vy'B, = g v-.ine 2oy = ?-%-q-n-e-rz-vz (30.3)

Now let us switch to the proper system S' of the moving particle. In S' the speed of the particle is zero, hence no Lorentz
force can be at work. If the particle gets accelerated in z-direction the wire has to carry an overall positive charge
producing an electric field. Indeed, we will find this to be true, and the reason lies in Lorentz contraction: Amazingly, the
small drift velocitiy in the order of magnitude of 1 mm per second produces a macroscopic effect via Lorentz
contraction!

In system S total charge of the wire is zero. There is no electric field outside the wire. Thus, the driftig electrons
necessarily have the same charge density as the positively charged atoms atrest: p, + p_ = n-e +n-(—e) = 0.

In system S' the distance of the drifting electrons is no longer Lorentz contracted, but the distance of the atoms sitting in
their lattice is Lorentz contracted now. Hence we have for the charge densities in S'

’ ’ ’ 1 1
p = py *+p- =n'e-n+n-(—e)-y—=n'e'(n——) =n-e ¥ B (30.4)
v Yv

It is this surplus positive charge that induces the electric field and the force on our charged particle.



The strength of the electric field in distance d = d' from the center of the wire is calculated with the law of Gauss :

N — 1
3€E’-dA’ = —-fp'-dV’
€o

On the left, the integral runs over the surface of some closed space; on the right the integral goes over the volume of that
space. For that closed space we choose a cylinder of radius d and arbitrary length Al’ sharing its symmetry axis with the
wire :

For reasons of symmetry the electric field has to be zero in the x-direction, the charge density shows the same symmetry
as the wire. Before, in system S, the positive x-direction was distinguished by the current.

Hence, the circular areas of the red cylinder do not contribute to the left integral. On the lateral surface, E" is vertical to
the surface, and its absolute value is the same everywhere. Thus, the left integral yields

fﬁ'-dﬁ =E-2-m-d-Al

The charge density outside the wire is zero. So, for the integral on the right side, we just have to integrate over the
volume of the wire enclosed in the cylinder. The charge density is given by (30.4), and we get

1 ! ! 1 ! ! 1 ! 2
—_ pdV =—pr2n—Al =—.r2.7-[.Al.n.e.yv.ﬁv
€o €o €o
So we get from the law of Gauss E'-2-m-d-Al' = si r2.m-Al'n-e-y, B’
0
Solved for E’ E' = fi r? 'n'e']/,,'ﬁyz (30.5)
. 2

In system S' we have a Coulomb force f " acting on our charged particle with

2r o ' ’ 1 1
f = q-E =f‘Z =q-E =q-s—-§r2.n.e.y]].ﬁv2
0

With ¢ =1/(gy - o) and B,° = v%/c? we get

! ! 1
f=qE = qopg =t one y, 2 (30.6)

Comparing with (30.3) we find f* = y, - f . The factor y, shows up here for the same reason as in (28.6) .

This section follows quite closely the presentation in [2 - 5].



C31 The Cylindrical Conductor 2

We consider the same situation as in the prevous section (first figure of C30). A particle with positive charge g moves
parallel to a long conducting wire with the same velocity as the drifting electrons within that wire.

In C30 we noted that in the laboratory frame S of the wire a Lorentz force acts on the particle pushing it away from the
wire. Following (30.3) we have

GL1)

Ul o~

2 Ho
f=f~Z=q'v'By=q'v'ﬂ'

Once again we calculate the force f " in the proper system S' of that particle. This time we use the transformation rules of
the electromagnetic field.

In system S we have E =0 and, at the position of the particle, B = B, = 5—; . é . From that we get with (27.1)

Ex’=Ex=0 Bx’=Bx=0

E/ =v,-(E,—v-B)=0 By’=Vu'(By+Cz E,)=%"B,
! ! v

Ez =Vv'(Ez+v'By)=Vv'v'By Bz=yv'(BZ_C_2'Ey)=0

The force acting in S' on the particle is

—

fl=q-(E +ixB)=q-(E+0xB)=qE,’

For the Coulomb force f " we find
f’=fz,=yv'Q'v'By=Vv'f (31.2)

Virtually without any effort we could verify the result of the last section.

and f=gq-v-—- L where I stands for the electric current measured in

Ho
2w d

So we have f’=y,,-q-v-5—?r-é
system S .

What about the current measured in system S' ? Electric current is the amout of electric charge passing a cross section of
the conductor per time unit. The calculation is easy for directions perpendicular to the relative speed v :

I I ! I I I 1
]y =dQ/dt =p A .uy = yv.p.;.A.yv.uy =yv.p.A.uy= ]/V'Iy (313)

u,, denotes the drift velocity of the electrons in y-direction. In general, the transformation of that drift velocity in x-
direction is a bit more complicated. However, in our special case, the drift velocity u,’ of the charge in S' is well known:
u,’ = —v . In this special case we find using (30.4) and (30.1)

Ix’=p"A"ux’ =p"A"(—‘U) =]/V'Tl'e']/v'ﬁv2'A'(—'U) =Vv'(_p)'A'(_v)= yv'Ix (314)
and we have

'#0_1 M

> with d'=d, I'=vy,-1 and B)/’= vy, B, (31.5)

Ul o~

This result is restricted to our special case of u? = v2.



C32 The Cylindrical Conductor 3

One more time we are back in the situation of C30. This time we will calculate the force acting on our particle in system
S' using the four-currents J and J' . The point is to illustrate the concept of current density.

The overal charge of the conducting wire is zero. There is no electric field outside the wire. Thus the charge density of
the drifting electrons has to be the same as the charge density of the lattice atoms deprived of their electrons in the
conduction band. Let us denote these charge densities with p and —p . Total four-current J in system S is the sum of the
four-current J_ of the electrons in the conduction band and the four-current J, of the lattice atoms :

Ptot * € c c 0

_ jx — — . 0 —_ . v = _p v
]tot - jy ]+ + ]— 1Y 0 + ( p) 0 0
Jz 0 0 0

The drift velocity u of the electrons is by assumption the same as the velocity v of system S' as seen from S.
The electric current associated with J,,, is

I =1, =j, A, =—p-v- 121 (32.1)
We have
c c c
0 0 u .
J+ =p- 0 =po+-1- o | = Po+ Vur uz = po+ Uy with  Jy o], = po,?-c?
0 0 U,
and
c c c
v v v .
J-=-p- = Po- Vo =po-Vor| 0 |=—Po--U-  with J o = p, ?-c?
0 0 v,
0 0 Uy

po+ and p,_ are the charge densities as measured in their proper system.

Now we calculate the four-currents /', J,' and J_' in system S' by multiplying the four-currents in system S with the
Lorentz matrix L :

y -y 0 O c c
T A A R RO (VI U
I+ I+ 0 o 10/ "o Pyl o
0 0 0 1 0 0
% —-y-B 0 0 c c—pB-v c—pB-v
, -y 0 0 -5 0
A A A e RGOk B R R A ) S 2% B
0 0 0 1 0 0 0
and hence
c c—f-v B-v ¢ Ptor
1 I I % 0 % jx’
I =]i+] =pv: —pVv: =pv = i
+ 0 0 0 Jy
0 0 0 iz

In S' the current density of the electrons is zero, but the positively charged lattice atoms represent an electric current in
the negative x'-direction. The strength of that current is

I'=1"=j/' ‘A = py-(=v)-r2-m=y-1 (32.2)

X



Following the law of Ampére, the current I induces in distance d' = d a magnetic field of strenth

&
I
I
I

Mo v-I Mo 1
0 -, 2 —y.B
2-m d Vioma~ Vo (32.3)
but that magnetic field does not act on our charged particle at rest in system S' !
In system S/, total charge density of the wire is
' 1
Prot = P Y- B-v-==p-y-p° (32.4)

As demonstrated in C30 this charge density exerts a Coulomb force on our charged particle of amount
! ! 1 !
E'-2-w-d-Al' = g—-p{ot-r2 -1 - Al
0

Rearranging the terms we find

1 1 1 1 1 1 1

EE=—— . — . 2y =—-r»v- . — v R ——— . .f32. I =
2-m-gy d Peor T T 2-m-gy d pry-prortem 2-m-gy d g v
1 1 v? 1 Up & 1 u I
= - — - = . — ] = ——.—. =B/ = B 32.5
2-mgy d 2w 2-m-gy d v 2 d "’ y VEVIEY (32.5)
For the Coulomb force in system S' we find as before in (31.2)
f’=le=Q'El=q'Vv'Q'v'By=Vv'f (326)

The four-current ] = (0,—p-v,0,0)7T is given from the beginning. Hence J' = L - ] is straightway calculated and we
find the current density and the charge density in system S' on a short path by

y _yﬁ 0 0 0 pvyﬁ C'.p”tot C(p]/ﬁz)
J Y e A G T B I B A P B I A

0 0 10 0 0 iy 0

0 0 01 0 0 i 0

As shown above we get from that the field vectors B’ and E’ of the conductor in system S'. All results are in complete
agreement with those calculated in sections C28 and C29 .

We made some effort to show that four-currents in general cannot be written in the form /] = p, - U. But only in that form
we have evidence that four-currents are four-vectors. In our example we showed that total four-current J at least can be
written as the sum of such four-currents. And the sum of four-vectors is a four-vector again as pointed out in A2 .



C33 The Closed Loop in a Magnetic Field

In the laboratory frame S a metal rod is moving in x-direction at constant speed v . The rod is in conductive contact with

a metal rail as shown in the figure below. Everywhere in the enclosed area we have a magnetic field pointing in the

z-direction :

oo
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In the laboratory frame S a Lorentz force is acting on the electrons in the moving rod

f=f=-e(-vB)=evB

inducing an electric current I in the closed circuit. With Faraday's law we can calculate the induced voltage U :

A
dt

dd
| B-l-v

Una = |gf
The induced current depends on the resistance R of the circuit :

I =Uyp/R=B-1-v/R

(33.1)

In the frame S' of the rod the average speed of the electrons is zero, and hence no Lorentz force can be at work. But in the

transformed field a non-zero electric field component E,," shows up :

E'=E =0 ,E' =v,-(E,~v-B,)=-y,-v-B, ,E =v (E+v-B)=0

The electrons in the rod are subjected to a Coulomb force of amount

-

f’ =fy’

(_e).(_yv).v.Bz = yv.e.v-Bzz ylif

(33.2)

As in the previous sections we have f "=y, - f . Following C29 the induced current is greater by the same factor y,, in

S', too:
I'=y,-1

And what about the induced voltage in system S' ?

do’ dA’ dA/y, dt dA/y,

'l = — =B . — = . = .B.
WUind' | = G = B Gr =V B qr = 1o dt

Therefore, for Ohm's resistance we have R’ = R :

’ |Uind’ | Vo |Uind | _ |Uind | _
R = 7 = = =
I Yo I

(33.3)



C34 The First Invariant of the Electromagnetic Field

Let a frame S' move at constant speed v as seen from another frame S . Let some electromagnetic field be given by
E and B inSandby E'and B’ in S'. Then the following equation holds true

=

E-B=E-F (34.1)

The inner product E-B=E (t,x,y,2)- B (t,x,y,z) isrelativistically invariant. Therefore, if E and B are
perpendicular to each other in system S they are perpendicular to each other in any other inertial system S' .

We could prove (34.1) using the equations (27.1) as done in [2 - 34.20]. We prefere another way, introducing a matrix M
which will turn out to be very useful in sections C38 and C39 :

0 c-By ¢-B, c¢-B,
c-B, 0 —E, E,
M = c-B, E 0 _E, (34.2)
c-B, -E, E, 0

M gives a 'dual' description of the electromagnetic field and is closely connected with our matrix F . A simple matrix
multiplication shows that

3

= ¢ E-B-1d, (34.3)

S OO
oS O o
[l e )
_ o oo

The trace , that is the sum of the main diagonal elements of M - F,is 4 -c- E-B.
If F is the description of the electromagnetic field in System S then, following (24.4), F' =L - F - L™ isthe
description of the same electromagnetic field in system S'. You can easily check that M' = L - M - L™ holds for the
matrix M . So we have
F'=L-F-L1 and M=L-M-L1 (34.4)

and hence

4-c-E-B = trace(M-F) = trace(L-M-L*-L-F-L') = trace(M'-F'") = 4-c-E"-B'
This is our proof of (34.1) .

By the way, for the determinants of the matrices F, F', M and M’ we have
- o2
det(F) = det(F") = det(M) = det(M") = —c?- (E - B) (34.5)
If a non-zero electromagnetic field can be transformed into a pure B'-field we have E’ = 0 and hence E'-B' =0

everywhere. According to (34.1) that means that E - B has to be zero, too. Of course we have the same situation if
some electromagnetic field can be transformed in a pure E'-field.



C35 The Second Invariant of the Electromagnetic Field

If some coordinate frame S' moves at constant speed v along the x-direction of another frame S then the following
equation concerning the descriptions of the electromagnetic field in S respective S' holds :

E2—¢?.B? = E2—(2.B" (35.1)
E?=FE-E and B2 =B-B denote the inner products of the 3d-field vectors.
For a proof of (35.1) we consider the determinants of the matrices F + M and F — M . The calculation shows that
det(F+ M) =det(F— M) = —(E? —c?-B?)? (35.2)
In any case we have for 4x4-matrices det(F — M) = det(M — F) . Hence we have
det(F + M) = det(F — M) = det(M — F) = det(—M — F) = —(E? —c? - B?)? (35.3)
The corresponding statement in S' is
det(F'+ M") =det(F'—M") = det(M' — F") = det(—M' — F") = —(E'?> — ¢% - B'?)? (35.4)

Further we know
det(F+ M) =det(L-(F+M)-L™)=det((L-F+L-M)-L™*) =
=det((L-F-L*+L-M-L1)) =det(F' + M)

We are not quite done with the proof of (35.1), but we know now that (E2? —c? - B?)? = (E'*> —c?- B'z)2 )

(25.1) shows that E? and B? are continuous functions of relative speed v . If the value of E2 — ¢? - B2 is positive (e.g.)
and if its absolute value is constant, then it stays positive with varying v , it cannot jump to —(E? — ¢? - B?).

Therefore, not only the square of E? — ¢? - B? is invariant, but E2 — ¢? - B2 itself. With that (35.1) is proven.

Of course you can prove (35.1) by means of (27.1), showing directly that E'?> — ¢? - B2 equals E? — ¢? - B2 . This
calculation is done in [2 - 34.21] .

(35.1) shows the impossibility of turning a pure electric field Eintoa pure magnetic field B’ : Then we would have

E? = —¢? - B'? which implies E? = 0 = B'2. Further we learn from (35.1) that some electromagnetic field can only be
transformed in a pure magnetic field if E? — c? - B> < 0. And, similarly, an electromagnetic field can only be
transformed in a pure electric field if E2 — ¢2 - B2 = 0. In both cases we have the additional condition of E-B=o0
according to the prevous section.

The necessary and sufficient conditions for such a transformation are studied in the next section.



C36 Which Fields can be Transformed to Zero ?

The answer comes from the equations (27.1). They contain the necessary and sufficient conditions for the existence of a
transformation leadingto E' =0 or B'=0.

If we evaluate (27.1) with E’ = 0 we find

and hence
(36.1)

This is the necessary and sufficient condition for the possibility to eliminate the electric field by applying a Lorentz
boost. The necessary condition of C34, namely E-B=0 , 1s already fulfilled :

E-B=E, B, +E, B,+E,-B,= 0-B,+v-B, B, +(-v-B,) B, =v-B,-B,—v-B, B, =0
The necessary condition found in C35 is fulfilled, too :

E?—c?-B*=0+4v?-B*+v?-B*— ¢*- (B> +B, +B,°)=—c*-B +(w?—c?)-(B,*+B,>) < 0

In the same way we find the conditions for the possibility to eliminate the magnetic field. From B'=0and (27.2)
we get

v
—-+E, =0 and BZ—C—Z-Ey =0

and hence
v v
B,=0 , B,=—="E, and BZ=C—2-E

Y =T (36.2)

y

With that, the necessary conditions of C34 and C35, namely E-B =0 and E2—c?-B2> 0, are fulfilled, too.



C37 The Nabla-Operator as a Four-Form

Maxwell's equations can be written in a nice and compact form by means of the following 4d-Nabla-operator :

N_(1 a 8 0 a)
P \c¢ ot’ox’ay oz (37.1)

The goal of this section is to give proof of

=N;-L? (37.2)
In other words: N; transforms like a four-form, obeying (9.6) .

We write out the right side of (37.2) :

10 0 9 0 vovp oo 1 d Jd 1 d d a 0
Nett= (oo e NV B OO (L Sy g Sy gy )
i ¢ 9t'ox 9y 0z 0o o0 10 VY aEFH TV PR ey ez
0 0 0 1
We have to show that the product equals N;'.
e wehave = = > because we always have dy = dy’ in our setting

dy ayr
- G}
e similarly we have = om

e Let f be an arbitrary function depending on the variable t" . The equations (1.1) show how t' itself depends
on the variables t and x . Hence we have

of of 6t+6f ox _ of +6f
a¢ "ot artaxar —ac YTV Ee
Obviously we have
10 1 a N d
Y VB3

c ot ¢ ot
what proves the statement (37.2) for the first component of N;' .

e Similarly we show that (37.2) holds for the second component of N;" :

of of ot of ox _ of 1 of
a¢ ot ox Toxaxr ot VP cTa Y
and hence
a1 3

d
A AL TAR A

This is exactly what we got from our matrix multiplication N; - L1,

Our 4d-Nabla-operator transforms like a four-form.



C38 Maxwell's Equations for Empty Space

T
Maxwell's equation are frequently written with the 3d-Nabla-operator V = (aa_x 'Ba_y ,% ) . He is understood as a vector
used to build inner products or cross products with the electric or magnetic field vectors.

BF-Ll. i %E | 0B L 0E _ 1 . _ . .2
. VE—SOp is short for ax+ay+az_s0p_”°C

Sources of the electric field are electric charges.

p

- N dE .
e VxB=y,- (] + & 'E) is the short form for
. = . . = o \T - o .
0B; 0By 0Bx 0By 9By 9Bx\ _ (. JOBx OBy . 9kz
(By 9z ' 9z ox ' ax Ay = Mozt & Bt']y+£0 Bt']z+£0 at
Curls in the magnetic field arise around electric currents and in varying electric fields. J stands for the
3d-current density vector.

Those 143 equations can be expressed with our 4d-Nabla-operator and the matrix F in a single matrix equation :

0 E, E, E,
1 0 o d 0 E, 0 c-B, —c-B,| _ S
("Eﬂ'@'&)' E, —c'B, 0 cB |TC P TT)T) (38.1)
E, ¢-B, —c-B, 0
Using our abbreviations we find a very compact form of (38.1) :
Ni-F = c-po-J; (38.2)

where J; = (¢ p,—jy,—jy, —Jj;) represents the four-form corresponding to the four-current J'. Further we used the
identity & - g = 1/c?.

Now to the second half of Maxwell's equations.

e V-BE=0 means —:+—+—=

- - = - - = - \T o = = T
= 0B OE 0Ey OE 0E, OE: JE B 0B 0B
e VXE =-—— means == _ ¥ =z ¥ X)) - [-= X
at at at at
Curls in the electric field are caused by varying magnetic fields.

Those 143 equations can be expressed with our 4d-Nabla-operator and the matrix M in a single matrix equation :

0 c-By ¢-B, c¢-B,
19 9 9 0 c-B, 0 -E, E,
—-—— ==, = (0,0,0,0 38.3
( at 'ox ' dy az) c-B, E, 0 —E, ( ) (38.3)
c-B, —E, E, 0

or, using our abbreviations

N;-M = (0,0,0,0) (38.4)



C39 Maxwell's Equations are Covariant

In the last section we wrote down Maxwell's 2-(3+1) equations in a very compact way :

Ni-F =c-pp-J;
and
Ni'M = Oi

with the four-forms J; = (¢ p,—jy, —jy,—j,) and 0; =(0,0,0,0) and the matrices F and M .

We also know how to transform those matrices and four-forms if we switch from one reference frame S to another frame
S'. With all that given it is easy to show that Maxwell's equations hold true in the same way in S' as they doin S :

N;-M = 0,
N,-L'-L-M =0,
(N, LYD-(L-M-L'Y) =0, Lt
N/ -M' = 0,

LA

The proof for the other four equations is done in the same manner :

Ni-F =c-pp-J;
Ni-L7'L-F = crup-J;
(N LY (L-F-L™") =c-pp-(;- LD
N/-F = c-po-Ji

=
=
=
Here we reap the fruits of our preparatory work !

Maxwell's equations are covariant, they have the same form in any inertial frame of reference. Maxwell's theory of the
electromagnetic field, the invariance of the electric charge, the Lorentz force law and STR fit in a perfect way.



C40 Some Cosmetics for the Electromagnetic Field

In the matrices F and M the electric and the magnetic field appear in a slightly asymmetric way. This could be fixed with
a small change in the definition of the electric field. A bunch of other aesthetic advantages would come with that small
change :

e Let us use the following new definition of the electric field: E:=E/c
We do not change the definition of the magnetic field: B :=B
Now, both fields are measured in the unit 'Tesla'

e Letususe the matrices F:=F/c and M := M /c to desribe the electromagnetic field. The factor ¢
disappears, and the duality of the matrices becomes evident :

0O E, E E 0O B, B, B,
f_|E 0 B -B e Mo |B O BB
E, -B, 0 B, B, E, 0 -E
E, B, -B, 0 B, -E, E, 0

e The factor ¢ disappearsin the forcelaw: K=q-F-U insteadof K = %-F-U

e The factor ¢ disappears in the second half of Maxwells's eight equations :
N;-F = po-J; insteadof N;-F = c-uy-J;

e The factor c? disappears in the determinants of Fand M :
det(M) = det(F) = —(E - B)? instead of  det(M) = det(F) = —c? - (E - B)?

e The factor c? disappears in the product of Fand M :
FM=(§§)1d4 instead of F'M=C2-(E.§).]d4

e The factor c? disappears in the second invariant of the electromagnetic field :
E2 — B2 instead of  E% — 2 - B2

—

e The set (25.1) of transformations of the electromagnetic field becomes symmetricin E and B :

E,' = Ex By’ = By
Ey’=yv'(Ey_ﬁ'Bz) B;=Vv'(By+ﬁ'Ez)
Ez’=yv'(Ez+ﬁ'By) B;=Yv'(Bz_B'Ey)

e  For the three-force f we now have f =q- (c E + 1 x §) . Both field vectors get multiplied by a velocity.

All those simplifications would follow directly from giving the speed of light the value 1, e.g. by measuring time in
seconds and lengths in light-seconds. The speed of light would then be 'one lightsecond per second', that is 1 or
"1 light'.

Centuries ago Carl Friederich Gauss has suggested an even more radical approach: Let the units of the electric and the
magnetic field be defined so that the field constants ¢, and p, have the value 1 . Then the speed of light would be 1,
too, and the field constants would disappear together with the speed of light from Maxwell's equations.

Our new definition E := E/c is just the most gentle intervention to achieve the desired goal of symmetry between the
electric and the magnetic field vectors.



