
 
 
Special Relativity with Four-Vectors 
 
 
 
 
 
This is no introduction to the Special Theory of Relativity. The reader should be familiar with the main concepts of that 
theory as presented in any standard text book on that topic. A concise introduction called 'Fast Track' can be found on  
https://www.physastromath.ch/uploads/myPdfs/Relativ/Fast Track.pdf  . 
We will oftly refere to results proven in that "Fast Track". So [1 - 21.3] points to formula  21.3  and  [1 - 3] to section 3 
of that paper. 
In addition, the reader should have some knowledge of matrix calculations. 
 
The aim of this paper is to introduce four-vectors as a powerful tool to solve problems in STR. The sections A1 to A11 
give the complete theory of four-vectors. A general proof is given of the frame-independence of the defined scalar 
product.  
Sections B12 to B25 show how to solve problems in STR using those four-vectors or the 'half speed' introduced in the 
'Fast Track'.  
Sections C26 to C40 deal with electro-magnetism and the Lorentz force law. Four-vectors are great to handle electro-
magnetism in STR. In C39 we can prove the form-invariance of Maxwell's equations by a change of the inertial frame by 
some simple matrix-multiplications. 
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A1    Four-Position  𝑋 
 
 
The Lorentz transformations show how to calculate the coordinates  (t',x',y',z') of an event in a reference frame S' from 
the coordinates (t,x,y,z) of that event in the reference frame S and vice versa - supposed the reference frames S and S' are 
in a special relationship: The x-axis and the x'-axis fall into one, and both of the y-axes and z-axes are parallel to each 
other. Furthermore, the relative speed 𝑣 of the reference frames is parallel to the x-axis: 𝒗))⃗ 	= (𝑣, 0, 0) as seen from S. 
Finally, the primary clocks in both systems, sitting at the origins of the frames, have both been resetted to zero at the 
moment the origins of the systems met (see [1 - 20]). All the other clocks in the systems S and S' have been synchronized 
with the primary clock of their frame. 
 
The Lorentz transformations are given by the following set of equations [see 1 - 20.5] : 
 

𝑡	 = 𝛾3 · 5𝑡′	 +	𝛽3 ·
𝑥′
𝑐 ; 																																																	𝑡′	 = 𝛾3 · <𝑡	 −	𝛽3 ·

𝑥
𝑐>															 

 
𝑥	 = 	𝛾3 · (	𝑥′	 + 	𝛽3 · 𝑐 · 𝑡′	)																																										𝑥′	 = 	 𝛾3 · (	𝑥	 −	𝛽3 · 𝑐 · 𝑡	)								 

(1.1) 
𝑦	 = 	𝑦′																																																																				𝑦′	 = 	𝑦																		 

 
𝑧	 = 	𝑧′																																																																				𝑧′	 = 	𝑧																			      

 

𝛾  and  𝛽  are the well-known abbreviations               𝛾	 = 	𝛾3 	= 	 <1 −
3B

CB
>
DEB     and    𝛽 = 𝛽3 = 	

3
C
   .                          (1.2) 

 
 
Using the Lorentz matrix 𝐿 the equations (1.1) can be expressed by a single matrix equation: 
 

G

𝑐 · 𝑡′
𝑥′
𝑦′
𝑧′

H 	= 	G

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

H · G
𝑐 · 𝑡′
𝑥
𝑦
𝑧

H                                                     (1.3) 

 
Time is multiplied by the speed of light in order to have the same units for all four components of the vector. The vector 
containing all four coordinates of an event is called the four-position of that event. 𝑋 and 𝑋′ are frequently used as 
symbols for four-positions. Using these symbols and the name 𝐿 for the Lorentz-matrix we can rewrite (1.3) as 
 

𝑋′	 = 	𝐿 · 𝑋	                                                                                  (1.4) 
 
The inverse transformation is done using the inverse Matrix 𝐿DI:  
 

𝑋	 = 	𝐿DI · 𝑋′	                                                                               (1.5) 
 
𝐿DI is almost identical to 𝐿 , you just have to drop the minus signs. 
 
Vectors that transform according to (1.4) when the inertial frame changes from S to S' are generally called four-vectors. 
 
Four-position  𝑋  is oftly written as   𝑋	 = 	 (𝑐 · 𝑡	, 𝑥	).  𝑐 · 𝑡  is the temporal part, the 3d-vector 𝑥  is the spatial part of the 
four-vector. A four-vector is always thought as a matrix with one column and four rows.  
 
 
 
 
 
 
 
  



A2    Linear Combinations of Four-Vectors 
 
 
Multiplication by any matrix is a linear mapping of vectors. Therefore, if  𝑋  and  𝑌 are four-vectors, any linear 
combination  𝑚 · 𝑋	 + 	𝑛 · 𝑌  of  𝑋  and  𝑌  is a four-vector, too, if  𝑚 and  𝑛  have the same value in all reference frames. 
 
Hence, the difference  𝑋(𝑡M) 	− 	𝑋(𝑡I)	 of two four-positions is another four-vector:     ∆𝑋	 = 	 (𝑐 · ∆𝑡	, ∆𝑥	) 
 
Rest mass  𝑚O  and rest charge density  𝜚O  are invariant. We will use those constants to create important four-vectors 
based on the four-velocity 𝑈: Four-momentum 𝑃 is defined by 𝑃 =	𝑚O · 𝑈  and the four-current  𝐽  by  𝐽 = 	𝜚O · 𝑈 . 
 
 
 
  



A3    Differentiating with Respect to Proper Time, Four-Velocity 𝑈 
 
 
Differentiating the four-position  𝑋	 = 	 (𝑐 · 𝑡	, 𝑥	)  with respect to time  𝑡  yields the vector (𝑐	, 𝑢)⃗ 	).  𝑢)⃗ 	 is the ordinary 
3d-velocity of some object in system S. But (𝑐	, 𝑢)⃗ 	) does not qualify as a four-vector. The first component does not 
transform according to (1.3): 

𝛾 · 𝑐	 − 𝛾 · 𝛽 · 𝑢R 		≠ 		𝑐 
 
Insert  𝑢)⃗ = (0, 𝑐/2, 𝑐/2) , for example. 
 
Deriving with respect to time 𝑡	cannot result in a four-vector, as time runs at a different speed in each coordinate frame. 
But there is one distinguished coordinate frame with any moving object: The actual rest frame of that moving object, the 
so-called eigen system or the comoving inertal frame. For all frames the following equation holds, where 𝜏 is the time in 
the comoving inertial frame : 
 

∆𝑡M − ∆𝑥M − ∆𝑦M − ∆𝑧M 	= 		 ∆𝜏M − 0 − 0 − 0	 = 	∆𝑡′M − ∆𝑥′M − ∆𝑦′M − ∆𝑧′M                                    (3.1) 
 
The proper time interval  ∆𝜏  is a relativistic invariant. A proof of (3.1) is given by theorem (8.4) of that paper. 
Hence, following A2 , the vector  I

∆W
· ∆𝑋  is a four-vector, too. 

This holds for arbitrarily small time intervals ∆𝜏 , and so it is true in the limit of  ∆𝜏	 → 0 . Deriving the four-position 
with respect to proper time gives us the four-velocity  𝑈 : 
 

𝑈	 = 	 lim
∆W→O

	∆\
∆W
		= 	 ]

]W
(𝑋)                                                                         (3.2) 

 
(3.1) clearly shows that Δ𝑡	 is greater than  Δ𝜏	. Hence we have 

 

Δ𝜏	 = 	Δ𝑡 · _1 − `B

CB
	= 		Δ𝑡	/	𝛾 										and												 𝑑𝑡𝑑𝜏 		= 	 𝛾 			                                    (3.3) 

 
Using the chain rule we can calculate the derivative with respect to  𝜏 : 
 

𝑈	 = 	 ]
]W
(𝑋) 		=		 ]

]e
(𝑋) · ]e

]W
		= 		 𝛾 · ]

]e
(𝑋) 	= 		 𝛾 · ]

]e
(𝑐 · 𝑡	, 𝑥	) 	= 	 𝛾 · (𝑐	, 𝑢)⃗ 	)                         (3.4) 

 
𝑈	 = 	𝛾 · (𝑐	, 𝑢)⃗ 	)  is the four-velocity we were looking for.  
 
The derivation of any four-vector with respect to proper time 𝜏  produces another four-vector, and we know now how to 
calculate this derivation. 
 
The four-velocity 𝑈 is sort of an artificial construct. It can not be measured, all we can measure is the traditional 3d-
velocity. But, as we will show, it is a great tool to do calculations in STR. 
 
The proper velocity of some object in its eigen frame is always   𝑈 =	𝛾O · (𝑐	, 0)⃗ 	) = 1 · (𝑐	, 0)⃗ 	) = (𝑐, 0,0,0)f              (3.5) 
 
The superscript character T indicates the transposition  of the 1x4-row-matrix to a 4x1-column-matrix or a vector. 
 
 
 
 
 
  



A4    Four-Momentum  𝑃 
 
 
Following A2 , multiplying four-velocity 𝑈 by the rest mass 𝑚O  we get another four-vector. That four-vector is called 
four-momentum : 
 

𝑃	 = 	𝑚O · 𝑈	 =	𝑚O · 𝛾 · (𝑐	, 𝑢)⃗ 	) 	= 	 (	I
C
· 𝐸ehe	, 𝑝	)                                                             (4.1) 

 
3d-vector  𝑝 	= 	𝛾 · 𝑚O · 𝑢)⃗ 	 is the SRT momentum vector, and for the temporal part we have used the equation 
𝐸ehe 	= 	 𝛾 · 𝑚O · 𝑐M . 
 
 
 
 
A5    Four-Current  𝐽 
 
 
Multiplying four-velocity  𝑈  by the charge density  𝜌O measured in the rest system of the charge we get the four-current  
 

𝐽	 = 			 𝜌0 · 𝑈	 = 	 𝜌0 · 𝛾𝑢 · (	𝑐	, 𝑢)⃗ 	)                                                                            (5.1) 
 

This representation is perfect for a cloud of charged particels who move all with velocity  𝑢)⃗   in the same direction. 
In a wire, only the electrons in the conduction band are moving, and total charge density in the wire is zero. Only a small 
part of all charged particels contribute to the current. There we need the more general expression  
 

𝐽	 = (	𝜌 · 𝑐	, 𝑗⃗	)                                                                                            (5.2) 
 
for the four-current. 𝜌 is the charge density measured in the actual reference frame, and  𝚥  is the 3d-vector of 
current-density.  𝑗R · 𝐴R	 is the current 𝐼R  in x-direction, when 𝐴R stands for the cross section of the wire orthogonal to 
the x-axis and  𝑗R 	= 𝜌 · 𝑢R  gives the current density in that x-direction (→ C32). 
 
 
 
 
A6    Four-Force  𝐾 
 
 
Following  A3  the derivation of a four-vector with respect to proper time gives another four-vector. Deriving the four-
momentum 𝑃 with respect to proper time we get the four-force  𝐾 : 
 

𝐾	 = 	 ]
]W
(𝑃) 		= 		 ]

]e
(𝑃) · ]e

]W
		= 		𝛾 · ]

]e
(𝑃) 	= 		𝛾 · ]

]e
(	I
C
· 𝐸	, 𝑝	) 	= 	𝛾 · (	I

C
· ]n
]e
	 , ]o⃗

]e
	)                           (6.1) 

 
By definition we have  	]o

)))))⃗

]e
	= 	 𝑓	, with  𝑓  denoting the ordinary 3d force vector. And for  ]n

]e
  we have by definition  

 
]n
]e
	= 	𝑓 · 𝑢)⃗ 	= 	 𝑓 · ]R⃗

]e
														or											𝑑𝐸	 = 	𝑓 · 𝑑𝑥		                                                    (6.2) 

 
So the four-force  𝐾  can be written as 
          

𝐾	 = 	 ]
]W
(𝑃) 		= 	𝛾 · (	I

C
· ]n
]e
	 , ]o⃗

]e
	) 	= 		𝛾 · (	I

C
· 𝑓 · 𝑢)⃗ 	, 𝑓	)                                                   (6.3) 

 
where  𝐸  stands for the total energy  𝐸ehe . The character  𝐹  will be used later to denote the Faraday matrix specifying 
the electromagnetic field.  



A7    Four-Acceleration  𝐴 
 
 
The derivation of the four-velocity 𝑈 with respect to proper time 𝜏  gives us the four-acceleration 
 

𝐴	 =	 ]
]W
(𝑈) 		= 		 ]

]e
(𝑈) · ]e

]W
		= 		𝛾 · ]

]e
(𝑈) 	= 		𝛾 · ]

]e
(𝛾 · (	𝑐, 𝑢)⃗ 	)) 	= 	𝛾 · < ]

]e
(𝛾) · (	𝑐, 𝑢)⃗ 	) 	+ 	𝛾 · ]

]e
(	𝑐, 𝑢)⃗ 	)>           (7.1) 

 
So we have to derive  𝛾	 with respect to  𝑡 : 
 

]
]e
(𝛾) 	=	 ]

]e
		t<1 − `B

CB
>
DEBu 	= 		 ]

] )̀)⃗
	 t<1 − )̀)⃗ B

CB
>
DEBu · ] )̀)⃗

]e
	= 		− I

M
· t<1 − )̀)⃗ B

CB
>
DvBu · <− M	)̀)⃗

CB
> · 𝑎⃗ 	= 	 𝛾x · 𝑐DM · 𝑢)⃗ · 𝑎⃗            (7.2) 

 
𝑎⃗ = ])̀)⃗

]e
	  is the  3d acceleration vector. So (7.1) can be developped to 

 
𝐴	 =	 ]

]W
(𝑈) 		= 	𝛾 · < ]

]e
(𝛾) · (	𝑐, 𝑢)⃗ 	) 	+ 	𝛾 · ]

]e
(	𝑐, 𝑢)⃗ 	)> 	=	 𝛾y · 𝑐DM · 𝑢)⃗ · 𝑎⃗ 	 · (	𝑐, 𝑢)⃗ 	) 	+ 	𝛾M · (0, 𝑎⃗)                    (7.3) 

 
By definition in SRT the equation  𝐾 = 𝑚O · 𝐴  is always true : 
 

𝐾	 = 	 ]
]W
(𝑃) 	= 	 ]

]W
(𝑚O · 𝑈) 	= 	𝑚O ·

]
]W
(𝑈) 	= 		𝑚O · 𝐴                                                     (7.4) 

 
Combining (6.3) with (7.3) we get 
 

𝐾	 = 	𝛾 · (	I
C
· ]n
]e
	, ]o⃗

]e
	) 	= 		𝛾 · (	I

C
· 𝑓 · 𝑢)⃗ 	, 𝑓	) 	=	𝑚O · 	[𝛾y · 𝑐DM · 𝑢)⃗ · 𝑎⃗ 	 · (	𝑐, 𝑢)⃗ 	) 	+ 	𝛾M · (0, 𝑎⃗)]                     (7.5) 

 
A close inspection of (7.5) shows that force 𝑓  and acceleration  𝑎⃗  do not need to be parallel in STR ! 
 
 
(7.5) shows that if  𝑢)⃗   and  𝑎⃗  are parallel then 𝑓  and  𝑎⃗ have to be parallel, too. In that case the temporal part of (7.5) 
says 

]n
]e
	= 	𝑓 · 𝑢)⃗ 	= 	 𝛾x · 𝑚O · 𝑢)⃗ · 𝑎⃗     

and we have 
                       𝑓 = 	𝛾x · 𝑚O · 𝑎⃗                                                                                    (7.6) 

 
Hence the term 'longitudinal mass' for  𝛾x · 𝑚O  used around 1905 in papers on that topic. 
 
 
If force  𝑓  and velocity  𝑢)⃗   are perpendicular to each other the first summand on the right side of  (7.3) and (7.5) is zero. 
Then from (7.5) we get the relation 
 

  𝑓 =	𝛾 · 𝑚O · 𝑎⃗                                                                                       (7.7)      
 
The term  𝛾 · 𝑚O  was called 'transversal mass'. In that case the rate of change of energy  ]n

]e
  is zero. Think of a charged 

particle moving in a magnetic field, when the only force acting on the particle is the Lorentz force. 
 
 
 
 
  
  



A8    A Special Inner Product for Four-Vectors 
 
 
The power of four-vectors as a tool for calculations in STR comes from a special inner product defined for four-vectors. 
The result of this inner product is independent of the reference frame used to calculate the product, it is relativistically 
invariant. So we can use in any situation the reference frame that makes the calculation as simple as possible. 
 
Let  𝑋|  and  𝑌|  be two four-vectors with components  𝑥O  to  𝑥x  and  𝑦O  to  𝑦x . We define the inner product  ∘	 by 
 

𝑋| ∘ 𝑌| 	≡ 		 𝑥O · 𝑦O − 𝑥I · 𝑦I − 𝑥M · 𝑦M − 𝑥x · 𝑦x                                                        (8.1) 
 

Obvously that inner product is commutative. 
 
Let us look at two examples. 
 
Let  𝑋| 	= (𝑐 · 𝑡	, 𝑥	) 	= 	 (𝑐 · 𝑡, 𝑥, 𝑦, 𝑧)f be the four-position of some particle. Definition (8.1) says 
 

𝑋| ∘ 𝑋| 	= 	 (𝑐 · 𝑡)M − 𝑥M − 𝑦M − 𝑧M 	= 	 (𝑐 · 𝜏)M                                                        (8.2) 
 

Indeed, the result does not depend of the reference frame used to calculate it. 
 
Let us do the same with four-velocity  𝑈| = 	𝛾 · (𝑐	, 𝑢)⃗ 	) = 𝛾 · (𝑐, 𝑢R, 𝑢�, 𝑢�)f  . We calculate  𝑈| ∘ 𝑈| : 
 

𝑈| ∘ 𝑈| 	= 	𝛾 · (𝑐	, −𝑢)⃗ 	)f · 𝛾 · (𝑐	, 𝑢)⃗ 	) 	= 𝛾M · (𝑐M − 𝑢)⃗ M) = 	 I

ID�
B

�B
	 · (𝑐M − 𝑢M) 	= 	 CB

CBD`B
	 · (𝑐M − 𝑢M) 	= 	 𝑐M             (8.3) 

 
Again, the result does not depend of the choice of the reference frame. 
 
 
Theorem: The value of the inner product  𝑋 ∘ 𝑌	 of four-vectors does not depend of the reference frame                 (8.4) 
 used to do the calculation:   𝑋 ∘ 𝑌 = 𝑋′ ∘ 𝑌′	                                                                                                                                                       
 
 
In order to give a proof of the theorem we will introduce a further mathematical tool in the next section: So called  
four-forms. 
  



A9    Four-Forms and the Inner Product 
 
 
To each four-vector  𝑋| = 	 (𝑥O, 𝑥I, 𝑥M, 𝑥x)f  we define a corresponding four-form by 
 

𝑋| =	 (𝑥O,−𝑥I,−𝑥M,−𝑥x)                                                                                  (9.1) 
 

A four-form is a matrix with one row and four columns, while a four-vector is represented by a matrix with one column 
and four rows. Be aware or the position of the index  𝑖  !  
 
Using four-forms we can write the inner product of section A8 as an ordinary product of matrices: 
 

𝑋| ∘ 𝑌| 	= 	G

𝑥O
𝑥I
𝑥M
𝑥x

H ∘ G

𝑦O
𝑦I
𝑦M
𝑦x

H	≡ 	𝑥O · 𝑦O − 𝑥I · 𝑦I − 𝑥M · 𝑦M − 𝑥x · 𝑦x 		= 	 (𝑥O,−𝑥I,−𝑥M,−𝑥x) · G

𝑦O
𝑦I
𝑦M
𝑦x

H	= 	𝑋| · 𝑌|          (9.2) 

 
By the symmetry of our inner product we have 
 

		𝑋| · 𝑌| 	= 	𝑋| ∘ 𝑌| 	= 	𝑌| ∘ 𝑋| 	= 	𝑌| · 𝑋|                                                                    (9.3) 
 

The last piece we need to give a very short proof of theorem (8.4) is the matrix  𝐺  : 
 

𝐺	 = G	

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

H                                                                                (9.4) 

 
Simple calculations show that the following equations hold: 
 

𝐺f = 	𝐺	 = 	𝐺DI			,					𝐿DI 	= 	𝐺DI · 𝐿 · 𝐺				,				𝐿	 = 	𝐺DI · 𝐿DI · 𝐺					,				𝑋| 	= 		 (𝐺 · 𝑋|)f 	= 	 (𝑋|)f · 𝐺                  (9.5) 
 

Four-vectors are defined to obey  𝑋|′	 = 	𝐿 · 𝑋| . But how to transform the corresponding four-forms ?  
Using (9.5) we get from  𝑋|′	 = 𝐿 · 𝑋|  
 

𝑋|� = (𝑋|′)f · 𝐺	 = (𝐿 · 𝑋|)f · 𝐺	 = 	 (𝑋|)f · 𝐿f · 𝐺	 = 	 (𝑋|)f · 𝐿 · 𝐺	 = 
 

=	 (𝑋|)f · (𝐺 · 𝐺DI) · 𝐿 · 𝐺	 = 	 [(𝑋|)f · 𝐺] · [𝐺DI · 𝐿 · 𝐺	] 	= 	𝑋| · 𝐿DI 
 

So four-forms are transformed from one reference frame to another by 
 

           					𝑋|′	 = 	𝑋| · 𝐿DI										and												𝑋| 	= 	𝑋|′ · 	𝐿		                                                           (9.6) 
 

 
Now we are well prepared for the short proof of theorem (8.4) : 
 

𝑋|′ ∘ 𝑌|′	 = 		𝑋|′ · 𝑌|′	 = 	 (𝑋| · 𝐿DI) · (𝐿 · 𝑌|) 	= 	𝑋| · (𝐿DI · 𝐿) · 𝑌| 	= 	𝑋| · 𝑌| = 	𝑋| ∘ 𝑌|                       (9.7) 
 

q.e.d. 
 
In section C37 we will introduce an important four-form in order to prepare the proof of another great theorem.  
 
 
   
  



A10    Some Selected Products of Four-Vectors 
 
 
In section A8  we have calculated 𝑈 ∘ 𝑈. Now we will use theorem (8.4) to do that calculation. A particle with four-
velocity  𝑈	 = 	𝛾 · (	𝑐, 𝑢)⃗ 	)  has the proper velocity  𝑈′ = 1 · (𝑐, 0)⃗ ), and so we have 
 

 𝑈 ∘ 𝑈		 = 	𝑈′ ∘ 𝑈′	 = 	1 · (𝑐,−0)⃗ )f · 1 · (𝑐, 0)⃗ ) 	= 		 𝑐M                                                  (10.1) 
 
In the eigen system of the particle the calculation is absolutely simple. Compare with the calculation in  A8 . 
 
Using (10.1) we find for the inner product of the four-momentum  𝑃 = 𝑚O · 𝑈  and the four-velocity 𝑈 
 

𝑃 ∘ 𝑈	 = (𝑚O · 𝑈) ∘ 𝑈	 = 	𝑚O · (𝑈 ∘ 𝑈) 	= 	𝑚O · 𝑐M 	= 	𝐸O	                                             (10.2) 
and  

𝑃 ∘ 𝑃	 = (𝑚O · 𝑈) ∘ (𝑚O · 𝑈) 	= 	𝑚O
M · (𝑈 ∘ 𝑈) 	= 	𝑚O

M · 𝑐M	                                         (10.3) 
 
 

Now let  𝐴 = ]
]W
(𝑈) be the four-acceleration of a particle with with the four-velocity  𝑈 . In the eigen system of the 

moving particle we have  𝑢)⃗ ′ = 0  and  𝑈′	 = 	1 · (𝑐, 0)⃗ ) . From that we get with (7.3)   𝐴′ = 𝛾M · (0, 𝑎⃗′) 	= 	1 · (0, 𝑎⃗′) .  
So we can calculate the inner product of 𝐴 and 𝑈 using theorem (8.4) : 
 

𝐴 ∘ 𝑈	 = 	𝐴′ ∘ 𝑈′	 = 	 (0,−𝑎⃗′)f · (𝑐, 0)⃗ ) 	= 	 (0, 0)⃗ ) = 	0                                               (10.4) 
 
Hence we have for the four-force 

 
𝐾 ∘ 𝑈	 = 	(𝑚O · 𝐴) ∘ 𝑈	 = 	𝑚O · (𝐴 ∘ 𝑈) 		= 𝑚O · 0	 = 	0                                           (10.5) 

 
 
For the four-acceleration  𝐴  we have according to  (7.3) 
 

𝐴 =	𝛾y · 𝑐DM · 𝑢)⃗ · 𝑎⃗ 	 · (	𝑐, 𝑢)⃗ 	) 	+	𝛾M · (0, 𝑎⃗) 
 
The components are given by 

𝐴O = 	𝛾y · 𝑐DM · 𝑢)⃗ · 𝑎⃗ · 𝑐																									 
𝐴I = 	𝛾y · 𝑐DM · 𝑢)⃗ · 𝑎⃗ · 𝑢R 	+		𝛾M · 𝑎R	 
𝐴M = 	𝛾y · 𝑐DM · 𝑢)⃗ · 𝑎⃗ · 𝑢� 	+		𝛾M · 𝑎�	 
𝐴x = 	𝛾y · 𝑐DM · 𝑢)⃗ · 𝑎⃗ · 𝑢� 	+		𝛾M · 𝑎�	 

 
and hence 

 
𝐴 ∘ 𝐴 = 	 (𝐴O)M − (𝐴I)M − (𝐴M)M − (𝐴x)M 	= 	 𝛾� · 𝑐Dy · (𝑢)⃗ · 𝑎⃗)M · �𝑐M − 𝑢RM − 𝑢�M − 𝑢�M� 	−														 

  
														2 · 𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗) · �𝑢R · 𝑎R + 𝑢� · 𝑎� + 𝑢� · 𝑎�� 	−	𝛾y · �𝑎RM + 𝑎�M + 𝑎�M� 		=					 

 
=	𝛾� · 𝑐Dy · (𝑢)⃗ · 𝑎⃗)M · [𝑐M − 𝑢M] 	− 	2 · 𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M −	𝛾y · 𝑎M 		=																															 

 
=	𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M · C

BD`B

CB
	− 	2 · 𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M −	𝛾y · 𝑎M 		=																																							           

 
						= 	 𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M 	− 	2 · 𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M −	𝛾y · 𝑎M 		= 	−	𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M −	𝛾y · 𝑎M 

																																					 
The general result ist 
 

𝐴 ∘ 𝐴 = 	−	𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M −	𝛾y · 𝑎M			                                                            (10.6) 
 



In the eigen system of the accelerated particle we have  𝑢)⃗ ′ = 0  and   𝛾 = 1 . There, (10.6) reduces to 
 𝐴′ ∘ 𝐴′ = 	−𝑎′M 	≡ 	−𝛼M . The proper acceleration  gets the symbol  𝛼⃗  (alpha). So (10.6) can be expanded to 
 

𝐴 ∘ 𝐴 = 	−	𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M −	𝛾y · 𝑎M 	= 	−𝛼M			                                                            (10.7) 
 
 
 
If  𝑢)⃗   and 𝑎⃗  are perpendicular to each other (e.g. in a storage ring with a Lorentz force at work) (10.7) reduces to  
 

   𝛼⃗ 		= 𝛾M · 𝑎⃗												and													𝛼 = 	𝛾M · 𝑎	 =	 𝛾M · `
B

�
                                                            (10.8)    

 
In a linear accelerator  𝑢)⃗   and  𝑎⃗  are parallel to each other. Then (10.7) reduces to 
 

𝛼M 	= 		𝛾� · 𝑐DM · (𝑢)⃗ · 𝑎⃗)M +	𝛾y · 𝑎M 	= 	 𝛾� · 𝑐DM · 𝑢M · 𝑎M + 𝛾y · 𝑎M 	=	               
 

=		 𝛾y · 𝑎M · <𝛾M · `
B

CB
	+ 1> 	= 	𝛾y · 𝑎M · < CB

CBD`B
· `

B

CB
	+ 1> 	=							      

 
=		 𝛾y · 𝑎M · < `B

CBD`B
	+ CBD`B

CBD`B
> 			= 		 𝛾y · 𝑎M · < CB

CBD`B
	> 		=													    

 
=	𝛾y · 𝑎M · 𝛾M 	= 	𝛾� · 𝑎M																																																																				 

 
In that case the proper acceleration 𝛼⃗		is 
 

𝛼⃗ = 	 𝛾x · 𝑎⃗                                                                                                 (10.9) 
 
and (7.6) tells us 
 

𝒇)⃗ = 	 𝛾x · 𝑚O · 𝑎⃗ 	= 	𝒎𝟎 · 𝜶))⃗                                                                                   (10.10) 
 
 

If a centripetal force is at work we have, following (7.7) and (10.8) 
 

𝒇)⃗ = 	 𝛾 · 𝑚O · 𝑎⃗ 	= 	
𝟏
𝜸
· 𝒎𝟎 · 𝜶))⃗ 	                                                                                (10.11) 

 
 
 
 
 
 
 
 
 
  



A11    Four-Momentum as a Conserved Quantity 
 
 
The conservation laws for momentum and energy merge into one to the conservation law for four-momentum. 
 
Conservation of four-momentum means 
 

�𝑃|
|

		= 		�𝑃�
�

 

 
where the sum runs over all particles involved in a collision bevor (𝑖) and after (𝑗) that collision. 
 
In A4  we noticed 

𝑃| 	= 	 (
I
C
· 𝐸|	, 𝑝|	)		  

  
The sum over the first components means total energy divided by the speed of light. So the conservation of the first 
component of the four-momentum guarantees conservation of total energy. 
The sum over the spatial components of four-momentum means total 3d momentum. The conservation of that sum 
guarantees conservation of total 3d momentum. Be aware that  𝑝 	=	𝛾 · 𝑚O · 𝑢)⃗ 	 is the SRT momentum vector. 
 
 
The second part of this paper brings a lot of examples, many of them illustrating the power of calculations with four-
vectors. Starting from conservation of four-momentum we will build inner products with selected four-vectors to 
eliminate unknown variables. This may look as follows : 
 

𝑃I 	+	𝑃M 	= 	𝑃x 	+	𝑃y 								⟹								 𝑃I ∘ 𝑃y +	𝑃M ∘ 𝑃y 	= 	𝑃x ∘ 𝑃y 	+	𝑃y ∘ 𝑃y					 
 
or 
 

𝑃I 	+	𝑃M 	= 	𝑃x 	+	𝑃y 							⟹							 (𝑃I +	𝑃M) ∘ (𝑃I +	𝑃M) 	= 	 (𝑃x 	+	𝑃y) ∘ (𝑃x +	𝑃y)		 
 
 
For each inner product we are free then to choose the reference frame to do the calculation. 
 
  



B12    Energy, Momentum and Rest Energy 
 

 
As a theoretical application of four-vectors we give a proof of the well known equation 
 

    𝐸eheM 		= 		𝐸OM 	+	𝑝M · 𝑐M                                                                     (12.1) 
 
(12.1) is true in every frame of reference. 
 
 
Let  𝑃  denote the four-momentum of some object in the reference frame S. We have  𝑃 = (	𝐸ehe/𝑐	, 𝑝	) . In the rest 
frame of that object, i.e. in its co-moving inertial frame, the four-momentum of that object is 
 𝑃O = 	1 · 𝑚O · (𝑐	, 0)⃗ 	) 	= 	 (	𝐸O/𝑐	, 0)⃗ 	) . Now we calculate the inner products 𝑃 ∘ 𝑃 and  𝑃O ∘ 𝑃O  and use theorem (8.4) : 
  
 

• 𝑃 ∘ 𝑃 = 	 (𝐸ehe/𝑐)M 	− 	𝑝M			     by the definition of the inner product 
 

• 𝑃O ∘ 𝑃O =	 (𝐸O/𝑐)M 	− 0           by the definition of the inner product 
 

• both terms are equal, and hence     𝐸eheM 	−	𝑝M · 𝑐M 		= 		 𝑐M · (𝑃 ∘ 𝑃) 		= 	 𝑐M · (𝑃O ∘ 𝑃O) 	= 	𝐸OM	          q.e.d.                                   
 
 
 
 
 
 
 
 
 
 
B13    The Four-Momentum of Light Quanta 
 
 
For light quanta alias photons with 𝑚O = 0   (12.1) reduces to    𝐸eheM 		= 		0		 +	𝑝M · 𝑐M . So we have  
 

𝐸ehe = 	𝑝 · 𝑐	 = 	𝐸�|� = 	𝐸                                                                        (13.1) 
 

For particles with speed  𝑐  we have  𝑝 = 𝐸/𝑐  . The four-vector of a photon looks like 
 

𝑃 = (	𝐸/𝑐	, 𝑝	) 	= 	 n
C
· (	1	, 1)⃗ 	) 	= 	 �·�

C
· (	1	, 1)⃗ 	)                                                        (13.2) 

 
If the photon runs in y-direction the unit vector  1)⃗   can be written as   1)⃗ = (0,1,0)	.  
 
For the four-momentum of light quanta we always have 
 

𝑃 ∘ 𝑃 = �·�
C
· �·�
C
· (	1 − 1) 	= 	0                                                                          (13.3) 

 
In general we have  𝑃 ∘ 𝑃 = (𝐸O/𝑐)M . For light particles with zero rest mass (they are really light ...) we get from that 
(13.3) too. 
 
 
  



B14    The Fast Observers Measurements 
 
 
Let some object move with four-momentum  𝑃 = (	𝐸ehe/𝑐	, 𝑝	) 	= 	𝛾 · 𝑚O · (𝑐	, 𝑣⃗	) in the reference frame S. For 
somebody resting in S (observer A) we have 
 

• 𝐸ehe = 	𝛾 · 𝑚O · 𝑐M 	= 	𝑐 · 𝑃O 	= 	𝑈O ∘ 𝑃	          with the proper velocity    𝑈O = 	1 · (	𝑐	, 0)⃗ 	) 
 

• 𝐸O 	= 	𝑐 · √𝑃 ∘ 𝑃                because of       𝑃 ∘ 𝑃	 = 	𝑚O
M · 𝑐M      

 
• 𝐸�|� = 		𝐸ehe −	𝐸O 	=	𝑈O ∘ 𝑃	 − 	𝑐 · √𝑃 ∘ 𝑃		 

 
• 𝑚O 	= 	√𝑃 ∘ 𝑃		/	𝑐 

 
 

 
Now let the observer B move with velocity  𝑈  in the frame S . That observer observes the same object as before in his 
reference frame S'. What are the values observer B ascribes to the moving object ? 
 

• 𝐸O  and  𝑚O  have the same values for B as they had for A. These values are invariant. 
 

• 𝐸ehe′ = 	𝑈O′ ∘ 𝑃′	 = 	𝑈 ∘ 𝑃       where   𝑈O′ = 	1 · (	𝑐	, 0)⃗ 	)  denotes the proper velocity of B in his frame S' 
 

• 𝐸�|�′	 = 		𝐸ehe′ −	𝐸O′	 = 		𝑈 ∘ 𝑃	 − 	𝑐 · √𝑃 ∘ 𝑃 
 

All of that values are easily calculated in both frames of reference. 
 
 
 
 
 
What if the moving object is a photon ist ? Then we have   𝑃 = (	𝐸ehe/𝑐	, 𝑝	) 	= 	

�·�
C
· 	 (	1	, 1)⃗ 	)   with some unit vector 1)⃗  .  

 
For both observers we have  𝑚O = 0   and   𝐸O 	= 0  , and for both   𝐸	 = 	𝐸�|� = 		𝐸ehe  holds true. But the energy of the 
photon differs for  A and  B : 
 
For A we have        𝐸	 = 	𝑈O ∘ 𝑃	 = 	1 · (	𝑐	, 0)⃗ 	) ∘ �·�

C
· 	 (	1	, 1)⃗ 	) 	= 	𝑐 · 𝑃O 	= 	ℎ · 𝑓         

 
For B we have        𝐸′	 = 	𝑈 ∘ 𝑃	 = 	𝑈O′ ∘ 𝑃′	 = 		1 · (	𝑐	, 0)⃗ 	) ∘ �·��

C
· 	 (	1	, 1)⃗ 	) 	= 	ℎ · 𝑓′ 

 
in both cases the energy can be calculated with the inner product of four-vectors. 
 
 
 
  



B15    Pair Annihilation 1  
 
 
Let us look at a head-on collision of a electron and a positron. The particle and its anti-particle disappear and a pair of 
quanta carries away momentum and energy. We write down the four-momenta of all particles in the center of mass 
system of the incoming leptons : 
 
𝐴 the four-momentum of the electron :         𝐴	 = 	𝛾 · 𝑚O · (	𝑐	, 𝑣⃗	)   
 
𝐵 the four-momentum of the positron :         𝐵	 = 	𝛾 · 𝑚O · (	𝑐	, −𝑣⃗	)   
 
In the center of mass system total 3d momentum is zero before the collision. So total momentum has to be zero after the 
collision, too. Hence the necessity of two photons heading away after the collision with equal energies in opposite 
directions : 
 
𝐶 the four-momentum of one of the photons :    𝐶	 = 	 �·�

C
· 	 (	1	, 1)⃗ 	)   

 
𝐷 the four-momentum of the other photon :       𝐷	 =	 �·�

C
· 	 (	1	, −1)⃗ 	)   

 
 
The argument above is based on the conservation of  the spatial components of four-momentum 
 

𝐴	 + 	𝐵	 = 	𝐶	 + 	𝐷 
 
The temporal component, i.e. conservation of energy, yields 
 

2 · 𝛾 · 𝑚O · 𝑐	 = 	2 · ℎ · 𝑓/𝑐	 
 
and hence 

ℎ · 𝑓	 = 	𝛾 · 𝑚O · 𝑐M 
 
 
The direction of flight of the photons is unknown. 
 
 
  



B16    Pair Annihilation 2  
 
 
Now let a fast positron hit an electron at rest in some reference frame S. We know from B15 that two quanta are created. 
Their 3d momenta carry on the 3d momentum of the incoming positron. In this section we are going to calculate the 
energies (or the frequencies) of the quanta in a special case: Both quanta should move along the line of the incoming 
positron : 
 

 
 

 
We do that calculation in a reference frame T that moves with 'half of the speed' of 𝑣 in the direction of 𝑣  (for that 'half 
speed' 𝑤 consult [1 - 3] ). In that reference frame T we are back in the situation of B15 ! Both quanta have the same 
frequency 𝑓′ with 
 

ℎ · 𝑓′	 =	 𝛾  · 𝑚O · 𝑐M 	= 	𝑚O · 𝑐M · 	<1 −
 
C
>
DEB · <1+  

C
>
DEB      

 
Using formula [1 - 1.4] for the longitudinal Doppler shift we can calculate the corresponding frequencies in frame S : 

                     

ℎ · 𝑓I 		= 	ℎ · 𝑓′ · _C¡ 
CD 

	 =	𝑚O · 𝑐M · 	<1 −
 
C
>
DEB · <1 +  

C
>
DEB · <1 +  

C
>
¡EB · <1 −  

C
>
DEB 	= 	𝑚O · 𝑐M ·

C
CD 

   

and                                                                                                                                                                                   (16.2) 

ℎ · 𝑓M 		= 	ℎ · 𝑓′ · _CD 
C¡ 

	 = 	𝑚O · 𝑐M · 	<1 −
 
C
>
DEB · <1+  

C
>
DEB · <1 −  

C
>
¡EB · <1 +  

C
>
DEB 	= 	𝑚O · 𝑐M ·

C
C¡ 

     

 
 

It is not easy to show that energy conservation is guaranteed with (16.2). I am thankful to Mathematica® to do that 
calculation for me ... So the following equation is correct : 
 

ℎ · 𝑓I 		+ ℎ · 𝑓M 		= 	 𝛾3 · 𝑚O · 𝑐M 	+	𝑚O · 𝑐M	 
 
[2 - 29.44] gives solutions to this problems that look rather complicated. By means of the 'half speed' 𝑤 many problems 
can be solved with a minimal mathematical effort. 
 
  

(16.1)
1) 



B17    Pair Annihilation 3  
 
 
We are back again in the situation of  B16. But now, the quantas are allowed to fly off in any direction in frame T :  
 

 
 

System T is moving to the right with speed 𝑤 as seen from S . So the upper quant moves towards the observer resting in 
S and hence has the increased frequency 	𝑓I > 𝑓′ in frame S, while the quant below has its frequency Doppler shifted to 
	𝑓M < 	𝑓I  . We use the general Doppler formula [1 - 22.1] : 
 

𝑓¤ 		= 			 𝑓f ·
1

𝛾  · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠𝜑	)

		 

 
For  𝑓f   we have to insert  𝑓′  from section  B16 . We get the increased frequency 	𝑓I if we insert 𝛼′ , and we get the lower 
frequency 	𝑓M if we insert 180° − 𝛼′  for  𝜑 : 
 

 

ℎ · 𝑓I 		= ℎ · 𝑓′	 ·
1

𝛾  · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠(𝛼′)	)

	= 𝛾  · 𝑚O · 𝑐M ·
1

𝛾  · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠(𝛼′)	)

	= 	
𝑚O · 𝑐M

1 − 𝑤𝑐 · 𝑐𝑜𝑠(𝛼′)
 

 

ℎ · 𝑓M 		= ℎ · 𝑓′	 ·
1

𝛾  · (	1 −
𝑤
𝑐 · 𝑐𝑜𝑠(180° − 𝛼′)	)

	= 𝛾  · 𝑚O · 𝑐M ·
1

𝛾  · (	1 +
𝑤
𝑐 · 𝑐𝑜𝑠(𝛼′)	)

	=	
𝑚O · 𝑐M

1 + 𝑤𝑐 · 𝑐𝑜𝑠(𝛼′)
 

 
 
With  𝛼′ = 0°  and 𝑐𝑜𝑠(𝛼′) = 1  we get the results of the last section B16 . 
 
Again, using the 'half speed'  𝑤 simplifies the calculation and gives a quite handsome result. 
 
In system S both of the angles 𝛼 and  𝛽 are smaller compared to 𝛼′  resp.  180° − 𝛼′ . 𝛼 and  𝛽 can be calculated with the 
aberration formula [1-22.3] : 

 

𝑡𝑎𝑛	 ª
M
	= 	_(CD 

(C¡ 
	 · 𝑡𝑎𝑛	 ª�

M
       and       𝑡𝑎𝑛	 «

M
	= 	_(CD 

(C¡ 
	 · 𝑡𝑎𝑛	 I�O°Dª�

M
 

 
The 3d momenta of the quanta have to catch the 3d momentum of the incoming positron. 
 
  



B18    Pair Annihilation 4 
 
 
One more time we are back in the situation of  B16. Now a detector catches only quanta that fly off at a right angle to the 
direction of the incoming positron : 
 

 
 
We will calculate the energies of both of the quanta and the angle		𝜑 in the figure above. Let us list the four-momenta of 
all of the involved particles :  
 

• 𝑃I = 𝛾3 · 𝑚O · (	𝑐	, 𝑣	, 0	, 0	)         the four-momentum of the incoming positron 
 

• 𝑃M = 𝑚O · (	𝑐	, 0	, 0	, 0	)                the four-momentum of the electron at rest in S 
 

• 𝑃x =	
�
C
· 𝑓I · (	1	, 0, −1	, 0	)         the four-momentum of the quantum catched by the detector 

 
• 𝑃y = 	

�
C
· 𝑓M · (1	, 𝑐𝑜𝑠(𝜑)	, 𝑠𝑖𝑛(𝜑)	, 0	)        the four-momentum of the other quantum 

 
Conservation of four-momentum means    𝑃I 	+	𝑃M 	= 	𝑃x 	+	𝑃y	 . The first three components of that vector equation 
yield three equations for the unknown variables  𝑓I  , 𝑓M   and  𝜑 : 
 

• 𝛾3 · 𝑚O · 𝑐	 +	𝑚O · 𝑐		 = 	
�
C
· 𝑓I 	+	

�
C
· 𝑓M	         

multiplied by  𝑐  we get (no surprise)                                        𝐸I 	+	𝐸M 	= 	𝐸x 	+	𝐸y (18.1) 
 

• 𝛾3 · 𝑚O · 𝑣	 + 	0		 = 		0	 +	�
C
· 𝑓M · 𝑐𝑜𝑠(𝜑) 

multiplied by  𝑐  we get                                                                𝐸I ·
3
C
		= 	𝐸y · 𝑐𝑜𝑠(𝜑)      (18.2) 

 
• 0		 =		 �

C
· 𝑓M · (−1)	+	

�
C
· 𝑓M · 𝑠𝑖𝑛(𝜑)   

multiplied by  𝑐  we get                                                                  𝐸x 	= 	𝐸y · 𝑠𝑖𝑛(𝜑)    (18.3) 
 
 
In a first step we get rid off the angle 𝜑 by adding the squares of the equations (18.2) and (18.3) : 
 
        𝐸IM ·

3B

CB
		+ 	𝐸xM 	= 		𝐸yM · (𝑠𝑖𝑛M(𝜑) 	+	𝑐𝑜𝑠M(𝜑)) 	= 	𝐸yM	         or         𝐸yM 	−	𝐸xM 	= 		𝐸IM ·

3B

CB
	     (18.4) 

 
Now we multiply (18.1) by  𝐸y 	−	𝐸x	 and use (18.4) to get 
 
(𝐸I 	+	𝐸M) · (𝐸y 	−	𝐸x) 	= 	 (𝐸x 	+	𝐸y) · (𝐸y 	−	𝐸x) 	= 	𝐸yM 	−	𝐸xM 	= 		𝐸IM ·

3B

CB
		      (18.5) 



Dividing (18.5) by  (𝐸I 	+	𝐸M)  we get                                        𝐸y 	−	𝐸x 	=		
nEB	·	

¬B

�B

nE	¡	nB
		       (18.6) 

 
(18.1) still says                                                                            	𝐸y 	+	𝐸x 	= 	𝐸I 	+	𝐸M     (18.7) 
  

Adding (18.6) and (18.7) we find                                          	2 · 𝐸y 	= 	𝐸I 	+	𝐸M 	+	
nEB	·	

¬B

�B

nE	¡	nB
	   (18.8) 

 
3B

CB
  can be expressed by the energies 𝐸I and 𝐸M as follows : 

 

                            1 − 3B

CB
	= 	 I

­B
	= 	 nB

B

nEB
           and hence             3

B

CB
	= 1 −	 I

­B
	= 1 −	nB

B

nEB
	= 	 nE

BD	nB
B

nEB
       (18.9) 

 
Inserting (18.9) in (18.8) we get  
 
                     2 · 𝐸y 	= 	𝐸I 	+	𝐸M 	+	

nEB	
nE	¡	nB

· nE
BD	nB

B

nEB
	= 𝐸I 	+	𝐸M 	+	𝐸I 	−	𝐸M 	= 	2 · 𝐸I                (18.10) 

 
Together with (18.7) we find finally                                𝐸y 	= 	𝐸I        and       		𝐸x 	= 	𝐸M        (18.11) 
 
The angle 𝜑 can be calculated by  

                                                     cos(𝜑) = 	 oE°
o±
	= 		 ­·²³·3

n±/C
=		 ­·²³·3

nE/C
	= ­·²³·3

­·²³·C
		= 	 3

C
		= _1 −	nB

B

nEB
                   (18.12) 

 
 
All solutions are given in terms using the energies 𝐸I and 	𝐸M only. The solutions (18.11) and (18.12) are rather simpel, 
and they clearly satisfy the equations (18.1) to (18.3). Let me write down the solutions once again : 
 

• ℎ · 𝑓I 	= 	𝐸x 	= 	𝐸M 	= 	𝑚O · 𝑐M 
 

• ℎ · 𝑓M 	= 	𝐸y 	= 	𝐸I 	= 	 𝛾3 · 𝑚O · 𝑐M 
 

• cos(𝜑) = 	 3
C
		= _1 −	nB

B

nEB
	=	_1 −	 I­B 

 
Measuring  𝑓I  and  𝜑  allows to calculate the energy of the incoming positron. 
  



B19    Pair Creation 
 
 
A high energy quantum can not decay into an electron-positron-pair without the presence of another particle. In the 
center of mass frame of the created particles total momentum would be zero, while the momentum of the incoming 
quantum is not zero in any frame of reference. Only the presence of another particle, usually the kernel of an atom, 
allows that process to take place. Good luck for the astronomers: The quanta are forbidden to decay spontaneously in 
empty space, most of them travel unchanged over 'astronomical' distances. 
 
In the rest frame of the involved kernel we have 
 

• 𝑃I = 	
�·�
C
· (	1	, 1	, 0	, 0	)      the four-momentum of the incoming quant 

 
• 𝑃M =	 (	𝑀 · 𝑐	, 0	, 0	, 0	)       the four-momentum of the kernel  

 
• 𝑃x			       the four-momentum of the cluster containing the new particles and the kernel after that the  

 pair creation took place 
 

(it is impossible to calculate the single momenta of all of the three particles after the pair-creation without further 
informations). 
 
Conservation of four-momentum means 
 

𝑃I 	+	𝑃M 	=	𝑃x  
 
The square of this equation is 
 

𝑃I ∘ 𝑃I 	+ 2 · 𝑃I ∘ 𝑃M +	𝑃M ∘ 𝑃M 	= 	𝑃x ∘ 𝑃x                                                     (19.1) 
 

 
𝑃I ∘ 𝑃I   equals zero,  𝑃M ∘ 𝑃M   equals  (𝑀 · 𝑐)M  and  𝑃I ∘ 𝑃M   results in  ℎ · 𝑓 · 𝑀 . We calculate the square of  𝑃x in the 
rest frame of the cluster. There we have (the kernel being much heavier than the created leptons) 
 
              𝑃x′ ≈ 		 ¶(𝑀 + 2 · 𝑚O) · 𝑐	, 0	, 0	, 0·	        and hence        𝑃x ∘ 𝑃x 	= 	𝑃x′ ∘ 𝑃x′	 ≈ 	(𝑀 + 2 · 𝑚O)M · 𝑐M .  
 
Inserting these terms in (19.1) we get 
 

0	 + 	2 · 	ℎ · 𝑓 · 𝑀	 +	(𝑀 · 𝑐)M 	≈ (𝑀 + 2 · 𝑚O)M · 𝑐M                 
 

expanded 
 

2 · 	ℎ · 𝑓 · 𝑀	 +	𝑀M · 𝑐M 	≈ 	𝑀M · 𝑐M 	+ 	4 · 𝑀 · 𝑚O · 𝑐M 	+ 	4 · 𝑚O
M · 𝑐M 

 
and simplified 

ℎ · 𝑓	 ≈ 	2 · 𝑚O · 𝑐M 	+ 	2 · 𝑚O
M · 𝑐M/𝑀	 = 	2 · 𝑚O · 𝑐M · <	1 +

²³
¹
>                                (19.2) 

 
The result shows again that without the presence of that kernel, i.e. with 𝑀 = 0 , the input energy would go to infinity, 
and the pair creation could not take place. If, instead of a kernel, the involved particle is an electron the energy of the 
incoming quant has to be at least twice the rest energy of the created particles. 
 
 
 
  



B20    The Perfectly Inelastic Collision 
 
 
Let two particles with rest mass  𝑚º  and  𝑚»  move along the x-direction in system S with velocities  𝑢)⃗ º = 	 (	𝑢º	, 0	, 0	)  
and  𝑢)⃗ » = 	 (	𝑢»	, 0	, 0	) . After a completely inelastic collision they build a single new particle. We want to calculate the 
rest mass  𝑚C  and the velocity  𝑢)⃗ C = 	 (	𝑢C	, 0	, 0	) of that new particle in system S. 
 
Conservation of four-momentum means   𝑃º 	+	𝑃» 	= 	𝑃C   . Squared we have 
 

𝑃º ∘ 𝑃º + 2 · 𝑃º ∘ 𝑃» + 𝑃» ∘ 𝑃» 	= 	𝑃C ∘ 𝑃C 
 
The square terms are calculated in the rest frame of the particle. So we get 
 

𝑚º
M · 𝑐M 	+ 	2 · 𝛾º · 𝑚º · (	𝑐	, 	𝑢º	, 0	, 0	) ∘ 𝛾» · 𝑚» · (	𝑐	, 	𝑢»	, 0	, 0	) 	+ 𝑚»

M · 𝑐M 	= 	𝑚C
M · 𝑐M      

 
Dividing by 𝑐M and calculating  𝑃º ∘ 𝑃»   we find 

 

𝑚º
M 	+ 	2 · 𝛾º · 𝑚º · 𝛾» · 𝑚» ·

(𝑐M − 𝑢º · 𝑢»)
𝑐M 	+𝑚»

M 	= 	𝑚C
M	 

rearranged 

𝑚C
M 	= 	𝑚º

M 	+	𝑚»
M 	+ 	2 · 𝑚º · 𝑚» · 5𝛾º · 𝛾» · 	<1 −

𝑢º · 𝑢»
𝑐M >;	 

 
Let us compare (20.1) with 

(𝑚º +𝑚»)M 	= 	𝑚º
M 	+	𝑚»

M 	+ 	2 · 𝑚º · 𝑚» 
 
In (20.1) we have the additional factor 

  𝑘	 = 	𝛾º · 𝛾» · 	<1 −
`½·`¾
CB

> 	= 	 <1 − `½B

CB
>
DEB · <1 − `¾B

CB
>
DEB · <1 − `½·`¾

CB
> 

 
If the signs  𝑢º and 𝑢»  differ, i.e. if the particles collide with opposite velocities, all three factors of k are greater than 1 
and  𝑚C  is greater than  𝑚º +𝑚» . If one of the velocities equals zero the third factor disappears, one of the first two 
factors equals 1 and the other is greater than 1. With some algebra we could show that  𝑘 is greater than 1 in the last case 
too, where  𝑢º and 𝑢»  have the same sign. The rest mass of the new particle is always greater than the sum of the rest 
masses of the colliding particles. There is always some part of kinetic energy of the colliding particles that is converted 
into rest mass of the new particle. 
 
What about the velocity 𝑢C of the new particle ?  
Conservation of energy, i.e. the temporal part of conservation of four-momentum, says 
 

𝛾º · 𝑚º · 𝑐M 	+	𝛾» · 𝑚» · 𝑐M 	= 	 𝛾C · 𝑚C · 𝑐M                                                   (20.2) 
 
Conservation of 3d momentum, i.e. the spatial part of conservation of four-momentum, yields 

 
𝛾º · 𝑚º · 𝑢º 	+ 𝛾» · 𝑚» · 	𝑢» 	= 	 𝛾C · 𝑚C · 𝑢C                                        (20.3) 

 
Dividing (20.2) by  𝑐M we get an expression for  𝛾C · 𝑚C . Dividing (20.3) by that term we get 
 

	𝑢C 	= 	
𝛾º · 𝑚º · 	𝑢º 	+	𝛾» · 𝑚» · 	𝑢»

𝛾º · 𝑚º 	+	𝛾» · 𝑚»
 

 
	𝑢C  is the velocity of the center of mass of the particles - before and after the collision. 
 
  

  (20.1) 

  (20.4) 



B21    The Perfectly Elastic Collision 1 
 
 
Let a particle with rest mass  𝑚 and velocity 𝑢 = 𝑢R collide with a particle with mass 𝑀 at rest. The collision does not 
need to be head-on : 
 

 
 
Given the velocity 𝑢 , the ratio 𝑚/𝑀 of the masses and the angle 𝛼 between  𝑤))⃗   and the x-axis we will calculate the 
velocities of the particles after the collision. 
 
Let us start with the conservation of four-momentum :         𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑆           where                                      (21.1) 
 
𝑃 = 𝛾 · 𝑚 · (𝑐, 𝑢, 0,0)  for the pushing particle with mass 𝑚 before the collision 
𝑄 = 	𝑀 · (𝑐, 0,0,0)  for the resting particle with mass M before the collision 
𝑅 = 𝛾  · 𝑀 · (𝑐, 𝑤 · 𝑐𝑜𝑠(𝛼), 𝑤 · 𝑠𝑖𝑛(𝛼),0)  for the pushed particle after the collision 
𝑆 = 𝛾� · 𝑚 · (𝑐, 𝑟 · 𝑐𝑜𝑠(𝛼), 𝑟 · 𝑠𝑖𝑛(𝛼),0)  for the pushing particle after the collision 
 
Squaring (21.1) we get                  𝑃 ∘ 𝑃	 + 	2 · 𝑃 ∘ 𝑄	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑅 ∘ 𝑆	 + 	𝑆 ∘ 𝑆                                  (21.2) 
 
From  𝑃 ∘ 𝑃 = 𝑆 ∘ 𝑆  and  𝑄 ∘ 𝑄 = 𝑅 ∘ 𝑅   follows   𝑃 ∘ 𝑄 = 	𝑅 ∘ 𝑆 . Now we multiply (21.1) by 𝑅 : 
 
                                                     𝑃 ∘ 𝑅	 + 𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑅	 + 	𝑆 ∘ 𝑅 = 𝑅 ∘ 𝑅	 + 𝑃 ∘ 𝑄                                               (21.3) 

 
We have eliminated 𝑆 and can calculate 𝑤 now. Inserting the terms 
 
𝑃 ∘ 𝑅 = 𝛾 · 𝛾  · 𝑚 · 𝑀 · (𝑐M − 𝑢 · 𝑤 · 𝑐𝑜𝑠(𝛼)) ,  𝑄 ∘ 𝑅 = 𝛾  · 𝑀M·𝑐M ,  𝑅 ∘ 𝑅 = 𝑀M·𝑐M   and    𝑃 ∘ 𝑄 = 𝛾 · 𝑚 · 𝑀 · 𝑐M 
 
in (21.3) we get a linear equation for  𝑤  with the solution 
 

𝑤 =
2 · <1 + 𝑀𝑚 · 1𝛾 > · 𝑢 · cos(𝛼)

<1 +𝑀𝑚 · 1𝛾 >
M
+ 𝑢M · 𝑐𝑜𝑠M(𝛼)

	 

 
 
From  𝑤  and  𝛼  we get        𝑤R = 𝑤 · 𝑐𝑜𝑠(𝛼)   ,    𝑤� = 𝑤 · 𝑠𝑖𝑛(𝛼)     and     𝛾  = (1 − 𝑤M)D

E
B                             (21.5) 

 
  

(21.4) 



The first component of (21.1), i.e. the conservation of energy, says     𝛾 · 𝑚 · 𝑐	 + 𝑀 · 𝑐	 = 	𝛾  · 𝑀 · 𝑐	 + 𝛾� · 𝑚 · 𝑐	 
Solving for 𝛾� we find 
 

𝛾� = 𝛾 +
𝑀
𝑚 −

𝑀
𝑚 · 𝛾 									and	hence								𝑟 = 	Å1 −

1
𝛾�M
	 

 
From conservation of momentum, i.e. from the second and the third component of (21.1), we get equations for the 
components of velocity  𝑟 and the angle  𝛽 : 
 

𝛾 · 𝑚 · 𝑢	 = 	 𝛾� · 𝑚 · 𝑟R + 𝛾  · 𝑀 · 𝑤R 				→ 			 𝑟R = Æ𝛾 · 𝑢 − 𝛾  ·
𝑀
𝑚 · 𝑤RÇ /𝛾� 

 

0 = 	𝛾� · 𝑚 · 𝑟� + 𝛾  · 𝑀 · 𝑤� 								→ 					 𝑟� = Æ−𝛾  ·
𝑀
𝑚 · 𝑤�Ç/𝛾� 

 
By choice 𝑤� has a positive sign, and hence the sign of  𝑟� is negative while the sign of  𝑟R can have either value. 
 
Finally, 𝛽  is given by 
 

𝛽 = 𝑠𝑖𝑛DI(𝑟R/𝑟)                                                                          (21.8)                
 
 
If you like to play with different values of  𝑢 , 𝑀/𝑚  and  𝛼  you can do so using my GeoGebra program written for this 
situation. The input parameters are adjusted with sliders, and the program shows visually and numerically the result of 
the collision :   https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss_1.ggb 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(21.6) 

(21.7) 



B22    The Perfectly Elastic Collision 2 
 
 
This section presents another solution for the problem of B21  (look at the figure at the beginning of B21). This time we 
do the calculations in the center of mass system S' of the two particles : 
 

 
 
Let 𝑣  be the velocity of  S' as seen from S. The particle 𝑀 , resting in S, moves in S' with velocity −𝑣 in the direction of 
the x-axis. In S', total momentum is zero before and after the collision. The particles necessarily have to move in opposite 
directions after the collision. Conservation of momentum and conservation of energy imply 
 

|𝑤′| 	= 	 | − 𝑣|								und								|	𝑟′| = 	 |𝑢′|                                                                (22.1) 
 

The velocity  𝑣  of  S'  as seen from  S  can be calculated with formula [1 - 7.1] : 
 

𝑣 = 	
𝑝ehe · 𝑐M

𝐸ehe
	= 	

𝛾 · 𝑚 · 𝑢 · 𝑐M

𝛾 · 𝑚 · 𝑐M + 𝑀 · 𝑐M 	= 	
𝛾

𝛾 +𝑀/𝑚 · 𝑢 

 
So we know  𝑣  and  𝛾3 . 
 
To be able to calculate the velocities 𝑤′  and  𝑟′  after the collision we need to know  𝑢 , 𝑀/𝑚  and the angle  𝜑′.  
𝜑′ is the angle between 𝑟′	)))⃗ and the positive x-axis. 𝜑′ may be obtuse if  𝑚	 < 	𝑀 . 
 
 
Following (22.1) we have        𝑟′ = 𝑢′				,				𝑟R′	 = 	𝑢′ · 𝑐𝑜𝑠(𝜑′)								and				𝑟�′	 = 	−𝑢′ · 𝑠𝑖𝑛(𝜑′)		                                  (22.3) 
 
and                                           𝑤′ = 𝑣			, 	𝑤R′	 = 	−𝑣 · 𝑐𝑜𝑠(𝜑′)					and					𝑤�′	 = 	𝑣 · 𝑠𝑖𝑛(𝜑′)					                                  (22.4) 
 
 
These are the results in system S'. With formulas [1 - 22.1] and [1 - 22.2] we will calculate the corresponding velocities 
in system S. 
 
 
 
 
 

(22.2) 



We find 
 

𝑟R = 	
𝑟R′ + 𝑣

1 + 𝑣 · 𝑟R′/𝑐M
					,					𝑟� = 	

𝑟�′
𝛾3 · (1 + 𝑣 · 𝑟R′/𝑐M)

							and						𝑟 = _𝑟RM + 𝑟�M	 

 
and 
 

𝑤R = 	
𝑤R′ + 𝑣

1 + 𝑣 · 𝑤R′/𝑐M
					,					𝑤� = 	

𝑤�′
𝛾3 · (1 + 𝑣 · 𝑤R′/𝑐M)

					and						𝑤 = _𝑤RM + 𝑤�M	 

 
 
Finally we have to calculate the angles 𝛼 and 𝛽 between the velocities and the x-axis in System S. This can be done in 
many ways. Our choice is 
 

𝛼 = 𝑡𝑎𝑛DI(𝑤�/𝑤R) 	= 	 𝑐𝑜𝑠DI(𝑤R/𝑤)						and					𝛽 = 𝑐𝑜𝑠DI(𝑟R/𝑟)	                               (22.7) 
 
 
I have written another GeoGebra program to match exactly the situation in this section. You can adjust 𝑢 , 𝑀/𝑚 and 𝜑′ 
with sliders and then watch the result of the corresponding collision. 
The link to this little program is   https://www.physastromath.ch/uploads/myPdfs/GeoGebra/ElastStoss_2.ggb 
  

(22.5) 

(22.6) 



B23    Compton Scattering 
 
 
Let us study the elastic collision of a photon with a free electron at rest : 
 

 
 
Before the collision we have the four-momenta    𝑃 = �·�

C
· (	1	, 1	, 0	, 0	)  and  𝑄 = 𝑚O · (	𝑐	, 0	, 0	, 0	)  

 
After the collision we have    𝑅 = �·�Ê

C
· (	1	, 𝑐𝑜𝑠	𝜑	, 𝑠𝑖𝑛	𝜑	, 0	)   and    𝑄′ = 	𝛾 · 𝑚O · (	𝑐	, 𝑢)⃗ 	)    

 
The starting point is, as usual, the conservation of four-momentum                𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑄′     (23.1) 
 
Squared                                  𝑃 ∘ 𝑃	 + 	2 · 𝑄 ∘ 𝑃	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑄′ ∘ 𝑅	 + 	𝑄′ ∘ 𝑄′	   
 
and hence            0	 + 	2 · 𝑄 ∘ 𝑃	 + 	𝑄 ∘ 𝑄	 = 	0	 + 	2 · 𝑄′ ∘ 𝑅	 + 	𝑄 ∘ 𝑄           and          𝑄 ∘ 𝑃	 = 	𝑄′ ∘ 𝑅 (23.2) 
 
Multiplying (23.1) by 𝑃′ and inserting (23.2) we find      𝑃 ∘ 𝑅	 + 	𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑅	 + 	𝑄′ ∘ 𝑅	 = 	0	 + 	𝑄 ∘ 𝑃  (23.3) 
  
We got rid off 𝑄′ ! The remaining inner products of (23.3) are 
 

• 𝑃 ∘ 𝑅	 = 	 �·�
C
· �·�

Ê

C
· (1 − 𝑐𝑜𝑠	𝜑) 	= 		 �

Ë
· �
ËÊ
· (1 − 𝑐𝑜𝑠	𝜑) 	= 	 I

CB
· 𝐸 · 𝐸′ · (1 − 𝑐𝑜𝑠	𝜑)		 

 

• 𝑄 ∘ 𝑅	 = 	𝑚O · 𝑐 ·
�·�Ê

C
	= 	𝑚O · 𝑐 ·

�
ËÊ
	= 	 I

CB
· 𝑚O · 𝑐M · 𝐸′     

 
• 𝑄 ∘ 𝑃	 = 	𝑚O · 𝑐 ·

�·�
C
		= 	𝑚O · 𝑐 ·

�
Ë
	= 		 I

CB
· 𝑚O · 𝑐M · 𝐸	       

 
Inserting these terms in (23.3)                                   �

Ë
· �
ËÊ
· (1 − 𝑐𝑜𝑠	𝜑) 	+	𝑚O · 𝑐 ·

�
ËÊ
	= 	𝑚O · 𝑐 ·

�
Ë
	            

 
multiplying by   Ë·Ë

Ê

�
                                                  ℎ · (1 − 𝑐𝑜𝑠	𝜑) 	+	𝑚O · 𝑐 · 𝜆	 = 	𝑚O · 𝑐 · 𝜆′	  

 
and rearranging the terms                                             ℎ · (1 − 𝑐𝑜𝑠	𝜑) 	=	𝑚O · 𝑐 · (𝜆′ − 𝜆)       
 
 
we find the Compton scattering formula                            𝜆′ − 𝜆	 = 	 �

²³·C
· (1 − 𝑐𝑜𝑠	𝜑) (23.4) 

 
�

²³·C
	≈ 2.426	picometer is called the Compton Wavelength of the electron. 

 
On the next page we calculate the energy  𝐸′ = ℎ · 𝑓′  of the scattered photon in terms of the energy of the incoming 
photon and the scattering angle 𝜑 .  
 
 
  



Let us rewrite (23.3) using the energy terms instead of wavelengths : 
 
                                            I

CB
· 𝐸 · 𝐸′ · (1 − 𝑐𝑜𝑠	𝜑) 	+		 I

CB
· 𝑚O · 𝑐M · 𝐸′	 = 		

I
CB
· 𝑚O · 𝑐M · 𝐸          (23.5) 

 
Multiplyied by 𝑐M and slightly rearranged 
 
                                                        𝐸′ · (𝐸 · (1 − 𝑐𝑜𝑠	𝜑) 	+		𝑚O · 𝑐M) 	=	𝑚O · 𝑐M · 𝐸       
 
and solved for  𝐸′  we find 
 

𝐸′		 = 	
𝑚O · 𝑐M · 𝐸

𝐸 · (1 − 𝑐𝑜𝑠	𝜑) 	+		𝑚O · 𝑐M
	= 	𝐸 ·

1

1	 +	 𝐸
𝑚O · 𝑐M

· (1 − 𝑐𝑜𝑠	𝜑)	
 

 
or, equivalently        
 

𝑓′		 = 	
𝑚O · 𝑐M · ℎ · 𝑓

ℎ · 𝑓 · (1 − 𝑐𝑜𝑠	𝜑) 	+		𝑚O · 𝑐M
	= 	𝑓 ·

1

1	 +	 ℎ · 𝑓𝑚O · 𝑐M
· (1 − 𝑐𝑜𝑠	𝜑)	

 

 
  

²³·CB

�
	≈ 	1.236 · 10MO	Hz   should then be called the Compton frequency of the electron. 

 
(23.4) and (23.6) both show that the energy of the scattered photon is always smaller than the energy of the infalling 
photon. Of course this is a basic consequence of conservation of energy. In addition, (23.6) shows 
 

𝐸′		 ≥ 		𝐸 ·
1

1	 +	 2 · 𝐸𝑚O · 𝑐M
	
 

 
 
 

 
An exact derivation of (23.4) without four-vectors is possible, but laborious. Compare e.g. 
https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_03.pdf  

(23.6) 

(23.7) 



B24    Inverse Compton Scattering 
 
 
A photon can gain much energy by an elastic head-on collision with a fast electron : 
 

 
 

The following four-vectors are used in the calculation : 
 

• 𝑃	 = 	�·�
C
· (	1	, −1	, 0	, 0	)	            for the photon before the collision  

 
• 𝑄	 = 	𝛾3 · 𝑚O · (	𝑐	, 𝑣	, 0	, 0	)        for the electron before the collision 

 

• 𝑅	 =	 �·�
Ê

C
· (	1	, 1	, 0	, 0	)	              for the photon after the collision 

 
• 𝑆	 = 	𝛾3� · 𝑚O · (	𝑐	, 𝑣′	, 0	, 0	)       for the electron after the collision 

 
As usual we start with conservation of four-momentum :                    𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑆       (24.1) 
 
squared                                                 𝑃 ∘ 𝑃	 + 	2 · 𝑃 ∘ 𝑄	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑅 ∘ 𝑆	 + 	𝑆 ∘ 𝑆    
 
and evaluated                                          0	 + 	2 · 𝑃 ∘ 𝑄	 +	𝑚O

M · 𝑐M 	= 	0	 + 	2 · 𝑅 ∘ 𝑆	 +	𝑚O
M · 𝑐M	 

 
Hence we have                                                                       𝑃 ∘ 𝑄	 = 	𝑅 ∘ 𝑆        (24.2) 
 
Multiplying (24.1) by  𝑅             𝑃 ∘ 𝑅	 + 	𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑅	 + 	𝑆 ∘ 𝑅	 = 	0	 + 	𝑃 ∘ 𝑄      
 
we get                                                              𝑃 ∘ 𝑅	 + 	𝑄 ∘ 𝑅	 = 		𝑃 ∘ 𝑄 (24.3) 
 
We have eliminated the unknown four-momentum S. Now we calculate the inner products : 
 

• 𝑃 ∘ 𝑅	 = 	 �·�
C
· �·�

Ê

C
· (1 + 1 − 0 − 0) 	= 	2 · �·�

C
· �·�

Ê

C
 

 

• 𝑄 ∘ 𝑅	 = 	𝑅 ∘ 𝑄	 = 	 �·�
Ê

C
· 𝛾3 · 𝑚O · (	𝑐 − 𝑣	) 

 
• 𝑃 ∘ 𝑄	 = 		 �·�

C
· 𝛾3 · 𝑚O · (	𝑐 + 𝑣	) 

 
inserted in (24.3)                        2 · �·�

C
· �·�

Ê

C
	+	�·�

Ê

C
· 𝛾3 · 𝑚O · (	𝑐 − 𝑣	) 	= 	

�·�
C
· 𝛾3 · 𝑚O · (	𝑐 + 𝑣	)	 

 
and divided by  𝛾3 · 𝑚O               M

­¬·²³·CB
· ℎ · 𝑓 · ℎ · 𝑓� + 	ℎ · 𝑓� · <1 − 3

C
> 	= 	ℎ · 𝑓 · <1 + 3

C
> 	≈ 	2 · ℎ · 𝑓   (24.4)  

 
For very fast electrons we have  𝑣 ≈ 𝑐 . Then we may replace <1 + 3

C
>  by the number 2 to simplify the calculation. 

Dividing (24.4) by 2 we get           
 
                                                    ℎ · 𝑓� · <	 I

­¬·²³·CB
· ℎ · 𝑓	 + I

M
· <1 − 3

C
>	> = 	ℎ · 𝑓 

 



												ℎ · 𝑓� = 	
	ℎ · 𝑓

1
𝛾3 · 𝑚O · 𝑐M

· ℎ · 𝑓	 + 12 · <1 −
𝑣
𝑐>
	= 	 𝛾3 · 𝑚O · 𝑐M ·

1

1	 +	(𝑐 − 𝑣)2 · 𝑐 · 𝛾3 · 𝑚O · 𝑐M
ℎ · 𝑓

	=	

	

																							= 	 𝛾3 · 𝑚O · 𝑐M ·
1

1 +	(𝑐 − 𝑣) · 𝛾3 · 𝑚O · 𝜆
2 · ℎ

 

 
 
For  𝑣 ≈ 𝑐  we have in good *) approximation   𝛾3 · (𝑐 − 𝑣) ≈ 𝑐/(2 · 𝛾3) . This simplifies (24.5) to 
  

𝐸� = ℎ · 𝑓� 	≈ 	 	𝛾3 · 𝑚O · 𝑐M ·
1

1 +	𝑐 · 𝑚O · 𝜆
4 · 	𝛾3 · ℎ

 

 
 
 
Let us calculate an example value for 	𝛾3 	= 	10′000  and  𝜆	 = 	500	nm : 
 

	
𝑐 · 𝑚O · 𝜆
4 · 	𝛾3 · ℎ

	≈ 	
3 · 10� · 9.1 · 10DxI · 5 · 10DÔ

8 · 10Õ · 6.6 · 10Dxy 	≈ 	0.517 

 
and hence 
 
                                      𝐸′ ≈ 	 I

I.ÕIÔ
· 10′000 · 𝑚O · 𝑐M 	≈ 6′592 · 𝑚O · 𝑐M 	≈ 6′592 · 511	keV	 ≈ 	3.37	MeV  

 
With increasing energy of the pushing electron the fraction of energy that goes to the photon increases too. In that way 
quanta with very high energies are created. 
 
 

	𝛾3 𝐸′	/	(	𝑚O · 𝑐M	) 
10 0.019 
100 5.27 

1'000 162 
10'000 6592 
100'000 95'084 

 
 
 
 
 
*)      

𝛾3 · (𝑐 − 𝑣) =
1

_1 − 𝑣𝑐

·
1

_1 + 𝑣𝑐

· 𝑐 · <1 −
𝑣
𝑐> 	= 	𝑐 ·

_1 − 𝑣𝑐

_1 + 𝑣𝑐

		≈ 	𝑐 ·
_1 − 𝑣𝑐
√2

	= √𝑐 ·
√𝑐 − 𝑣
√2

 

 

	⟹										
√𝑐

√2 · 𝛾3
	≈ 	

𝑐 − 𝑣
√𝑐 − 𝑣

	= 	√𝑐 − 𝑣 

 
	⟹ 												𝑐 − 𝑣	 ≈ 	

𝑐
2 · 𝛾3M

									and										𝛾3 · (𝑐 − 𝑣) ≈ 	
𝑐

2 · 𝛾3
	 

  

(24.5) 

(24.6) 



B25    Bremsstrahlung 
 
 
An electron is accelerated in a vacuum tube by a tension of some ten kilovolts. When its flight ends on the metallic anode 
plate a great part of its kinetic energy is set free in form of an X-ray quantum. Before the collision we have a fast electron 
and a heavy atom at rest. After the collision we have the pushed atom, the electron and the high energy quantum. The 
atom and the electron go into the calculation as a single cluster : 

 
So we have the four-vectors 
 
• 𝑃	 = 	𝛾3 · 𝑚O · (	𝑐	, 𝑣	, 0	, 0	)        the electron before the collision 
 
• 𝑄 = 	1 · 𝑀 · (	𝑐	, 0	, 0	, 0	)            the atom before the collision 
 
• 𝑅	 =	𝛾 · (𝑀 +𝑚O) · (	𝑐	, 𝑢R	, 𝑢�	, 0	)     the atom and the electron  
                                                          after the collision 
• 𝑆	 = 	�·�

C
· (	1	, 0	, 1	, 0	)                the X-ray quantum 

 
Once again the conservation of four-momentum : 
     
                                 𝑃	 + 	𝑄	 = 	𝑅	 + 	𝑆      (25.1) 
And squared : 

 
  𝑃 ∘ 𝑃	 + 	2 · 𝑃 ∘ 𝑄	 + 	𝑄 ∘ 𝑄	 = 	𝑅 ∘ 𝑅	 + 	2 · 𝑅 ∘ 𝑆	 + 	𝑆 ∘ 𝑆         (25.2) 
 

 
We have 6 inner products:    𝑃 ∘ 𝑃 = 𝑚O

M · 𝑐M  ;  𝑄 ∘ 𝑄 =	𝑀M · 𝑐M  ;  𝑅 ∘ 𝑅 = (𝑀 +𝑚O)M · 𝑐M  ;  𝑆 ∘ 𝑆 = 0  ; 
                                             	𝑃 ∘ 𝑄 = 	𝛾3 · 𝑚O · 𝑀 · 𝑐M  ;  𝑅 ∘ 𝑆 = 𝛾 · (𝑀 +𝑚O) ·

�·�
C
· (	𝑐 − 𝑢�)	 . 

 
Inserted in (25.2)  
 
        𝑚O

M · 𝑐M + 2 · 𝛾3 · 𝑚O · 𝑀 · 𝑐M + 𝑀M · 𝑐M = (𝑀M + 2 · 𝑀 · 𝑚O +𝑚O
M) 	· 𝑐M + 2 · 𝛾 · (𝑀 +𝑚O) ·

�·�
C
· (	𝑐 − 𝑢�)  

 
simplified                      2 · 𝛾3 · 𝑚O · 𝑀 · 𝑐M 	= 	2 · 𝑀 · 𝑚O · 𝑐M + 2 · 𝛾 · (𝑀 +𝑚O) · ℎ · 𝑓 · <1−

`Ú
C
> 

  
again                                       (𝛾3 − 1) · 𝑚O · 𝑀 · 𝑐M 	= 	 𝛾 · (𝑀 + 𝑚O) · ℎ · 𝑓 · <1 −

`Ú
C
> 

 
and finally                                            (𝛾3 − 1) · 𝑚O · 𝑐M ·

¹	
­�·(¹¡²³)

· C
CD`Ú

	= 	ℎ · 𝑓      (25.3) 

 
If the anode is made from molybdenum e.g. we have  ¹	

¹¡²³
	≈ 	 IÔÕOOO

IÔÕOOI
  . The factor  ¹	

¹¡²³
 comes very close to 1.  

Further we have   𝑢� < 𝑢 ≪ 	𝑐 ,  𝛾 	 and the factor  	𝑐/(𝑐 − 𝑢�)  are only a little bit greater than 1. The less energy is 
absorbed by the atom the smaller is the difference of those factors to 1 . So, as an upper limit for the energy of the X-ray 
quantum, we find 

																							ℎ · 𝑓	 ≤ 	 (𝛾3 − 1) · 𝑚O · 𝑐M 	= 	𝐸�|� 
 
The result is far from being a surprise: The maximum energy of the quantum is 100% of the kinetic energy of the 
electron. We might have predicted that result right from the beginning : 
 

ℎ · 𝑓²ºR 	= 	𝐸�|� 	= 	𝑈 · 𝑒 
 
Crystal structures are analyzed by diffractometers at tensions of 20 to 40 kilovolts, corresponding to X-ray wavelengths 
of one or a half Angström. 
 
  



C26    Lorentz Force as a Four-Vector 
 
 
Maxwell's theory of  electromagnetism is perfectly compatible with STR. So we may expect the Lorentz force law to be 
valid in STR, too:  𝑓 = 		𝑞 · ¶𝐸)⃗ 	+ 	𝑢)⃗ 	×	𝐵)⃗ · . Basically, this force law gives the definition of the electric and the magnetic  
field vectors. Neglecting gravity, the total force acting on a charged particle consists of Coulomb force and Lorentz force. 
 
(6.3) tells us how to define the corresponding four-force: 
 

           𝐾	 = 	𝛾 · (	I
C
· ]nàáà

]e
	,			]o⃗

]e
	) = 	𝛾 · (	I

C
· 𝑓 · 𝑢)⃗ 	,			𝑓	) = 		𝛾 · 𝑞 · (	I

C
· 𝐸)⃗ · 𝑢)⃗ ,			𝐸)⃗ 	+ 	𝑢)⃗ 	×	𝐵)⃗ 	)  

 
The magnetic field is not involved in changing the particles energy:   𝑢)⃗ 	×	𝐵)⃗   and  𝑢)⃗   are always perpendicular to each 
other, and so    𝑓 · 𝑢)⃗ 	= 𝑞 · ¶𝐸)⃗ 	+ 	𝑢)⃗ 	× 	𝐵)⃗ · · 𝑢)⃗ 	= 	𝑞 · 𝐸)⃗ · 𝑢)⃗ 	 . 
 
𝐾	 can be written as the product of a matrix 𝐹 and the four-velocity  𝑈 : 
 

										𝐾	 =
𝑞
𝑐 ·

⎝

⎜
⎛
0 𝐸R 𝐸� 𝐸�
𝐸R 0 𝑐 · 𝐵� −𝑐 · 𝐵�
𝐸� −𝑐 · 𝐵� 0 𝑐 · 𝐵R
𝐸� 𝑐 · 𝐵� −𝑐 · 𝐵R 0 ⎠

⎟
⎞
· 𝛾 · G

𝑐
𝑢R
𝑢�
𝑢�

H 

 
The matrix is named  𝐹	 in honor of Michael Faraday. 𝐹  is the SRT standard description of the electromagnetic field.  
Using the symbol  𝐹	 we can rewrite the Lorentz force law as  
 

															𝐾	 =
𝑞
𝑐 · 𝐹 · 𝑈 

 
𝐾 and  𝑈  are four-vectors. In another frame  S'  they are given by   𝐾′ = 𝐿 · 𝐾   and   𝑈′ = 𝐿 · 𝑈 . It is easy to find the 
matrix  𝐹′  with 

		𝐾′	 =
𝑞
𝑐 · 𝐹′ · 𝑈′ 

 
We multiply (26.3) from the left side with our matrix  𝐿  from A1 and we get 
 

𝐿 · 𝐾	 = 	
𝑞
𝑐 · 𝐿 · 𝐹 · 𝑈	 =	

𝑞
𝑐 · 𝐿 · 𝐹 · 𝐿

DI · 𝐿 · 𝑈 
and hence 

𝐾′ = 	𝐿 · 𝐾	 = 	
𝑞
𝑐 ·
(𝐿 · 𝐹 · 𝐿DI) · (𝐿 · 𝑈) 	= 	

𝑞
𝑐 · 𝐹′ · 𝑈′ 

 
The matrix  𝐹′  is given by   𝐹′ = 𝐿 · 𝐹 · 𝐿DI .   (26.4) 
 
If   𝐹  is the description of some electromagnetic field in sytem S then  𝐹′ = 𝐿 · 𝐹 · 𝐿DI  is the description of the same 
electromagnetic field in a system S', that moves with speed  𝑣  relative to S in positive x-direction. In the next section we 
will calculate the corresponding transformations of the single components of the electric and the magnetic field vectors. 
 
 
  

(26.1) 

(26.2) 

(26.3) 



C27    The Transformation of the Electromagnetic Field Vectors 
 
 
Following equation (26.4) we just have to calculate  𝐿 · 𝐹 · 𝐿DI  to get the components of  𝐹′ : 
 
 

With													𝐹	 = 	

⎝

⎜
⎛
0 𝐸R 𝐸� 𝐸�
𝐸R 0 𝑐 · 𝐵� −𝑐 · 𝐵�
𝐸� −𝑐 · 𝐵� 0 𝑐 · 𝐵R
𝐸� 𝑐 · 𝐵� −𝑐 · 𝐵R 0 ⎠

⎟
⎞
												and													𝐿	 = 	G

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

H			 

 
 
we find 
 
 

𝐹′	 =	

⎝

⎜
⎜
⎜
⎛

0 𝐸R 𝛾3 · (𝐸� − 𝑣 · 𝐵�) 𝛾3 · (𝐸� + 𝑣 · 𝐵�)

𝐸R 0 	𝑐 · 𝛾3 · (𝐵� −
𝑣
𝑐M · 𝐸�	) 		−𝑐 · 𝛾3 · (𝐵� −

𝑣
𝑐M · 𝐸�	)

𝛾3 · (𝐸� − 𝑣 · 𝐵�) 				−𝑐 · 𝛾3 · (𝐵� −
𝑣
𝑐M · 𝐸�	) 0 𝑐 · 𝐵R

𝛾3 · (𝐸� + 𝑣 · 𝐵�) 			𝑐 · 𝛾3 · (𝐵� −
𝑣
𝑐M · 𝐸�	) −𝑐 · 𝐵R 0 ⎠

⎟
⎟
⎟
⎞

 

 
 
Hence we have  
 
 

					𝐸R′	 = 	𝐸R 	
𝑎
𝑏 			𝐵R′	 = 	𝐵R

																												𝐸�′	 = 	 𝛾3 · (𝐸� − 𝑣 · 𝐵�)	 																														𝐵�� = 𝛾3 · <𝐵� +
𝑣
𝑐M · 𝐸�	>

																										𝐸�′	 = 	 𝛾3 · (𝐸� + 𝑣 · 𝐵�) 																														𝐵�� = 	 𝛾3 · <𝐵� −
𝑣
𝑐M · 𝐸�	>

 

 
 
To find the reverse transformation we have to replace  𝑣  by  −𝑣  and, by that,   𝐿  by  𝐿DI  . Doing so the plus and minus 
signs in the second and third row of  (27.1) are exchanged. 
 
In STR, the electric and the magnetic field are united to a single electromagnetic field. A pure eletric field in system S 
shows up as a mixed electric and magnetic field in system S'. With that, Einstein got rid of the 'asymmetries' he is 
complaining about in the first sentence of his famous 1905 paper "Zur Elektrodynamik bewegter Körper": "Dass die 
Elektrodynamik Maxwells - wie dieselbe gegenwärtig aufgefasst zu werden pflegt - zu Asymmetrien führt, welche den 
Phänomenen nicht anzuhaften scheinen, ist bekannt." 
 
 
  

 (27.1) 



C28    Force and Acceleration in a Storage Ring 
 
 

In the laboratory frame S a particle with positive charge 𝑞 is 
caught in a storage ring. The only non-zero component of the 
electromagnetic field is  𝐵� = −𝐵. The Lorentz force keeps the 
particle on its circular trajectory : 
 

𝑓 = 		𝑞 · ¶𝐸)⃗ 	+ 	 𝑣⃗ 	×	𝐵)⃗ · = 𝑞 · (	0	, 𝑣 · 𝐵, 0	) 
 
Force and acceleration are perpendicular to the speed 𝑣⃗ , so we 
can use (7.7) and write  

												𝑓 = 	𝛾3 · 𝑚O · 𝑎⃗	
 
hence           𝑎⃗ = (	0	, 𝑎�	, 0	)    with    𝑎� =

ë·3·ì
­¬·²³

                 (28.1) 
 
With  𝑎� =

3B

�
    we further find     𝐵 = ­¬·3·²³

ë·�
= o

ë·�
            (28.2) 

 
In the CERN laboratories near Geneva protons are accelerated up to 299'780'455 m/s (the speed of light is 299'792'458 
m/s). They are kept in a storage ring with a diameter of 4243 m. Thus, 𝛾3 ≈ 111.75 , and the strength of the field  𝐵  
needed to keep them on track is by a factor 112 greater than non-STR calculation would suggest. Instead of some milli-
Teslas the field strength created by superconducting magnets goes up to 8.3 Tesla. 
 
We recalculate 𝑎� in the laboratory system using the formalism of four-vectors. With (7.5) we have 
 

𝐾 =
𝑞
𝑐 · 𝐹 · 𝑈 = 𝛾3 ·

𝑞
𝑐 ·
G
0 0 0 0
0 0 −𝑐 · 𝐵 0
0 𝑐 · 𝐵 0 0
0 0 0 0

H · í

𝑐
𝑣
0
0

î = 𝛾3 ·
𝑞
𝑐 ·
G

0
0

𝑣 · 𝑐 · 𝐵
0

H = G

0
0

𝛾3 · 𝑣 · 𝑞 · 𝐵
0

H = 𝑚O · 𝛾3M · G

0
𝑎R
𝑎�
𝑎�

H 

 
and we again find the result (28.1) . 
 
A third calculation is done in the system S' of the moving particle, in its actual comoving inertial frame. There, the 
particles four-velocity is  𝑈′ = (𝑐, 𝑢)⃗ ) = (𝑐, 0,0,0) and, following (10.8), its proper acceleration is 
𝐴′ = 𝛾 M · (0, 𝑎R, 𝑎�, 𝑎�) . We get the same result by the matrix multiplication  𝐴′ = 𝐿 · 𝐴 : 
 

𝐴′ = 	G

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

H · G

0
0

𝛾3M · 𝑎�
0

H = G

0
0

𝛾3M · 𝑎�
0

H = 𝛾 M ·

⎝

⎛

0
𝑎R′
𝑎�′
𝑎�′⎠

⎞ = 1 ·

⎝

⎛

0
𝑎R′
𝑎�′
𝑎�′⎠

⎞ 

 
So we find     𝐴′ = 𝐴       and        𝑎⃗′ = 𝛾3M · 𝑎⃗ = 	 (	0	,

­¬·ë·3·ì
²³

	, 0	)  (28.3) 
 
𝐾′ = 𝑚O · 𝐴′ = 𝑚O · 𝐴 = 𝐾     and (7.7) induce     𝑓′ = 𝑚O · 𝛾 · 𝑎⃗′ = 𝑚O · 1 · 𝑎⃗′ = 𝑚O · 𝛾3M · 𝑎⃗ 	= 	 𝛾3 · 𝑓    (28.4) 
 
 
We do the calculation one more time in system S', but now we will use the formulas (27.1) for the transformations of the 
electromagnetic field : 
 

𝐸R′	 = 	𝐸R 	= 	0	
𝑎
𝑏	 		𝐵R′	 = 	𝐵R = 0																	

																																		𝐸�′	 = 	 𝛾3 · (𝐸� − 𝑣 · 𝐵�) = 	𝛾3 · 𝑣 · 𝐵 												𝐵�� = 𝛾3 · <𝐵� +
𝑣
𝑐M · 𝐸�	> = 0

																			𝐸�′	 = 	 𝛾3 · (𝐸� + 𝑣 · 𝐵�) = 0 																							𝐵�� = 	 𝛾3 · <𝐵� −
𝑣
𝑐M · 𝐸�	> = −𝛾3 · 𝐵

 

  



We find 
 
            𝑓′ = 𝑞 · ¶𝐸)⃗ ′	 +	𝑢)⃗ 	×	𝐵)⃗ ′· = 𝑞 · ¶𝐸)⃗ ′	 +	0)⃗ 	×	𝐵)⃗ ′· = 𝑞 · (	0	, 𝛾3 · 𝑣 · 𝐵	, 0	) = 𝑚O · 𝛾 · 𝑎⃗′ = 𝑚O · 1 · 𝑎⃗′ 
 
and finally again                                                   𝑎⃗′ = ­¬·3·ì

²³
	= 	 𝛾3M · 𝑎⃗                                                        (28.3) = (28.5) 

 
 
 
 
 
 
If a central force is at work we always have   𝑓′ = 𝑚O · 𝑎⃗′ = 𝑚O · 𝛾3M · 𝑎⃗ = 	 𝛾3 · (𝛾3 · 𝑚O · 𝑎⃗) = 𝛾3 · 𝑓  , and in the eigen 
system of the moving particle we have  
 
                                                                   𝑎⃗′ = 𝛾3M · 𝑎⃗            and          𝑓′ = 𝛾3 · 𝑓             (28.6) 
 
The general explanation is given with 
 

𝑓�′ =
]
]e�
(𝑝�′) =

]
]W
(𝑝�) =

]
]e
(𝑝�) ·

]e
]W
= 𝛾3 ·

]
]e
(𝑝�) = 𝛾3 · 𝑓�     

 
Similarly we have 
 

								𝑎�′ =
]
]W
<]��
]W
> = ]

]W
<]�
]e
· ]e
]W
> = ]

]W
<𝛾3 ·

]�
]e
> = 𝛾3 ·

]
]W
<]�
]e
> = 𝛾3 ·

]
]e
<]�
]e
> · ]e

]W
= 𝛾3M ·

]
]e
<]�
]e
> = 𝛾3M · 𝑎�   

 
 
If the force is perpendicular to velocity, 𝛾3 is a constant term and thus does not influence the differentiation with respect 
to time. 
 
So much for the special case of forces perpendicular to velocity. The other special case with  𝑓  parallel to  𝑣⃗  is treated in 
the next section. 
 
 
 
  
  



C29    Force and Acceleration in a Linear Accelerator 
 
 
A particle with rest mass 𝑚O and charge  𝑞  gets accelerated along the x-direction in laboratory system S by a constant 
electric field  𝐸)⃗ = 𝐸R . There is no magnetic field at work in frame S . 
 
Following (7.6) we have 
 

𝑓 	= 	𝑞 · 𝐸)⃗ 	= 	𝑞 · 𝐸)⃗ R 	= 	𝑓R 	= 	𝑚O · 𝛾x · 𝑎⃗R  
and hence  

𝑞 · 𝐸R
𝑚O

= 𝛾x · 𝑎R = 	51 −	
𝑣M

𝑐M;
DxM
·
𝑑𝑣
𝑑𝑡  

resulting in 

																	
𝑞 · 𝐸R
𝑚O

· 𝑑𝑡	 = 	51 −	
𝑣M

𝑐M;
DxM
· 𝑑𝑣 

 
By integration  ( Bronstein integral Nr. 178 ) we get 
 

																
𝑞 · 𝐸R
𝑚O

· 𝑡	 + 	𝐶		 = 		 𝑣 · 51 −	
𝑣M

𝑐M;
DIM

 

 
The constant term  𝐶  disappears if the speed is zero at time 𝑡	 = 0 . Solving (29.2) for  𝑣  with  𝐶 = 0  we get 
 

							𝑣(𝑡) =

𝑞 · 𝐸R
𝑚O

· 𝑡	

Å1 + <𝑞 · 𝐸R𝑚O · 𝑐
>
M
· 𝑡M

	 

 
In the beginning we have a linear growth in velocity as we would have in classical physics. Then, the denominator slows 
down the increase of speed more and more, and in the limit of  𝑡 → ∞  the speed approaches the speed of light  𝑐 : 
 

lim
	e→ð

		
𝑐 · 𝑞 · 𝐸R𝑚O

Å𝑐
M

𝑡M + <
𝑞 · 𝐸R
𝑚O

>
M
	= 	

𝑐 · 𝑞 · 𝐸R𝑚O

Å<𝑞 · 𝐸R𝑚O
>
M
	= 	𝑐 

 
To get (29.4) we did multiply nominator and denominator of (29.3) by 𝑐/𝑡 . 
 
 
What would be the description of this process in the comoving frame S'  of the accelerated particle ? In each moment we 
have in S'   𝐸R′	 = 	𝐸R		,			𝐸�′	 = 	0			,			𝐸�′	 = 	0			,			𝐵R′	 = 𝐵R = 0			,			𝐵�′	 = 0				and				𝐵�′	 = 0 . In any instant we have 
the very same situation as in system S , the equations (29.1) and (29.2) are valid in S' .  
 
Let us study the same situation again in the laboratory frame S , but now using four-vectors. 
 
We have   𝐸)⃗ = 	 (	𝐸R	, 0	, 0	) , 𝐵)⃗ = 0  and  𝑣⃗ = 𝑣⃗(𝑡) 	= (	𝑣(𝑡)	, 0	, 0	) . The vectors  𝑓	, 𝑣⃗	 and 	𝑎⃗  are parallel to each 
other. Further we have   𝑓 = 	𝑞 · ¶𝐸)⃗ 	+ 	𝑣⃗ 	×	𝐵)⃗ · = 𝑞 · (	𝐸R	, 0	, 0	)    and      𝑓 · 𝑣⃗ = 𝑞 · 𝑣 · 	𝐸R  . Inserting all that in 
equation (7.5)  we get 
 

 (29.2) 

 (29.3) 

 (29.4) 

 (29.1) 



𝐾 = 	𝛾 · 	

⎝

⎜
⎛

1
𝑐 · 𝑓 · 𝑣⃗	

𝑓R
𝑓�
𝑓� ⎠

⎟
⎞
=	

⎝

⎜
⎛
𝛾 ·
1
𝑐 · 𝑞 · 𝑣 · 	𝐸R
𝛾 · 𝑞 · 	𝐸R

0
0 ⎠

⎟
⎞
	= 	𝑚O · 𝐴	 = 	𝑚O ·

⎝

⎜⎜
⎛

𝛾y ·
1
𝑐 · 𝑣 · 	𝑎R

𝛾y ·
1
𝑐M · 𝑣

M · 𝑎R 	+ 𝛾M · 𝑎R	
0
0 ⎠

⎟⎟
⎞

 

 
 
From (29.5) we get two equations:  One for the temporal components and one for the first spatial components. The 
temporal equation, a little bit simplified, is 
 

	𝑞 · 	𝐸R 	= 	𝑚O · 	𝛾x · 	𝑎R 
 
and we are back to (29.1) and (7.6). The spatial equation is 
 

𝑓R 	= 	𝑞 · 	𝐸R 	= 	𝑚O · 𝛾x ·
1
𝑐M · 𝑣

M · 𝑎R 	+ 𝛾 · 𝑎R 	= 	𝑚O · 	𝛾x · 	𝑎R · 5
𝑣M

𝑐M + 𝛾
DM; 

 
The left sides of both equations are identical, so the factor  <3

B

CB
+ 𝛾DM>  has to be equal to 1 : 

 
𝑣M

𝑐M + 𝛾
DM 	=	

𝑣M

𝑐M + 51 −	
𝑣M

𝑐M; 	= 	1 

 
We got the same equation twice for 	𝑎R . 
 
 
 
 
 
 
  
  

 (29.5) 



C30    The Cylindrical Conductor 1 
 
 
Let a current 𝐼 flow in a long cylindrical wire. The wire is at rest in the laboratory frame S, it's cross section has radius 𝑟 
and the mean drift velocity of the electrons is 𝑣 . If 	𝑛 stands for the number of electrons per unit volume in the 
conduction band our variables are connected by 
 

𝐼	 = 	𝑛 · 𝑒 · 𝑟M · 𝜋 · 𝑣	                                                                             (30.1) 
 
Outside the wire, there is no force acting on a charged particle at rest, the electrical field is zero. However, we have a 
magnetic field. Its lines of force are concentric circles as depicted in green in the following figure : 
 

 
 
The current flows from the right to the left, the electrons are drifting with speed 𝑣 from left to the right. The symmetry of 
the magnetic field reflects the symmetry of the conductor and the current. 
 
For the strength of the magnetic field in distance 𝑑 to the center of the wire we find with Ampère's law and (30.1) 
 

𝐵� 	= 	
ò³
M·ó
· ô
]
	= 	 ò³

M·ó
· I
]
· 𝑛 · 𝑒 · 𝑟M · 𝜋 · 𝑣                                                               (30.2) 

 
For a charged particle in distance  𝑑  to the center of the wire, that moves with the same speed  𝑣  as the electrons in the 
x-direction we have 
 

𝑓 	= 		𝑞 · ¶𝑣⃗ 	×	𝐵)⃗ · 	= 	𝑓� 	= 	𝑞 · 𝑣R · 𝐵� 	= 	𝑞 · 𝑣 · ò³
M·ó
· I
]
· 𝑛 · 𝑒 · 𝑟M · 𝜋 · 𝑣	 = 	 ò³

M
· I
]
· 𝑞 · 𝑛 · 𝑒 · 𝑟M · 𝑣M	            (30.3) 

 
Now let us switch to the proper system S' of the moving particle. In S' the speed of the particle is zero, hence no Lorentz 
force can be at work. If the particle gets accelerated in z-direction the wire has to carry an overall positive charge 
producing an electric field. Indeed, we will find this to be true, and the reason lies in Lorentz contraction: Amazingly, the 
small drift velocitiy in the order of magnitude of  1 mm per second produces a macroscopic effect via Lorentz 
contraction! 
 
In system S total charge of the wire is zero. There is no electric field outside the wire. Thus, the driftig electrons 
necessarily have the same charge density as the positively charged atoms at rest :  𝜌¡ 	+	𝜌D 	= 	𝑛 · 𝑒	 + 𝑛 · (−𝑒) 	= 	0 . 
In system S' the distance of the drifting electrons is no longer Lorentz contracted, but the distance of the atoms sitting in 
their lattice is Lorentz contracted now. Hence we have for the charge densities in S' 
 

𝜌′	 = 	𝜌¡′	 +	𝜌D′	 = 	𝑛 · 𝑒 · 𝛾3 	+ 𝑛 · (−𝑒) ·
I
­¬
	= 	𝑛 · 𝑒 · 	<𝛾3 −

I
­¬
> 	= 	𝑛 · 𝑒 · 𝛾3 · 𝛽3

M                     (30.4) 
 
It is this surplus positive charge that induces the electric field and the force on our charged particle. 
 
 



The strength of the electric field in distance  𝑑 = 𝑑′  from the center of the wire is calculated with the law of Gauss : 
 

õ𝐸)⃗ ′ · 𝑑𝐴′)))⃗ 		= 		
1
𝜀O
· ÷𝜌′ · 𝑑𝑉′ 

 
On the left, the integral runs over the surface of some closed space; on the right the integral goes over the volume of that 
space. For that closed space we choose a cylinder of radius 𝑑 and arbitrary length ∆𝑙′ sharing its symmetry axis with the 
wire : 
 

 
 
For reasons of symmetry the electric field has to be zero in the x-direction, the charge density shows the same symmetry 
as the wire. Before, in system S, the positive x-direction was distinguished by the current. 
Hence, the circular areas of the red cylinder do not contribute to the left integral. On the lateral surface, 𝐸)⃗ ′ is vertical to 
the surface, and its absolute value is the same everywhere. Thus, the left integral yields 
 

õ𝐸)⃗ ′ · 𝑑𝐴 		= 	𝐸′ · 2 · 𝜋 · 𝑑 · ∆𝑙′ 

 
The charge density outside the wire is zero. So, for the integral on the right side, we just have to integrate over the 
volume of the wire enclosed in the cylinder. The charge density is given by (30.4), and we get 
 

1
𝜀O
· ÷𝜌′ · 𝑑𝑉′ 	= 	

1
𝜀O
· 𝜌′ · 𝑟M · 𝜋 · ∆𝑙′	 = 	

1
𝜀O
· 	𝑟M · 𝜋 · ∆𝑙′ · 𝑛 · 𝑒 · 𝛾3 · 𝛽3

M 

 
So we get from the law of Gauss               𝐸′ · 2 · 𝜋 · 𝑑 · ∆𝑙′	 = 		 I

ú³
· 	 𝑟M · 𝜋 · ∆𝑙′ · 𝑛 · 𝑒 · 𝛾3 · 𝛽3

M 
 
Solved for 𝐸′			                                                       𝐸′	 = 		 I

ú³
· I
M·]
	𝑟M · 𝑛 · 𝑒 · 𝛾3 · 𝛽3

M                                                    (30.5)                                         
 
In system S' we have a Coulomb force 𝑓′	 acting on our charged particle with  
 

𝑓′	 = 		𝑞 · 𝐸)⃗ ′	 = 	𝑓�′	 = 	𝑞 · 𝐸′	 = 	𝑞 · I
ú³
· I
M·]
	𝑟M · 𝑛 · 𝑒 · 𝛾3 · 𝛽3

M  
 
With  𝑐M = 1/(𝜀O · 𝜇O)   and   𝛽3

M = 𝑣M/𝑐M  we get 
 
                                                          𝑓′	 = 	𝑞 · 𝐸′	 = 	𝑞 · 𝜇O ·

I
M·]
	𝑟M · 𝑛 · 𝑒 · 𝛾3 · 𝑣M                                                    (30.6) 

 
 
Comparing with (30.3) we find  𝑓′	 = 	 𝛾3 · 𝑓 . The factor  𝛾3  shows up here for the same reason as in (28.6) . 
 
This section follows quite closely the presentation in [2 - 5].  



C31    The Cylindrical Conductor 2 
 
 
We consider the same situation as in the prevous section (first figure of C30). A particle with positive charge  𝑞  moves 
parallel to a long conducting wire with the same velocity as the drifting electrons within that wire. 
 
In C30 we noted that in the laboratory frame S of the wire a Lorentz force acts on the particle pushing it away from the 
wire. Following (30.3) we have 
 

																	𝑓 	= 𝑓� 	= 	𝑞 · 𝑣 · 𝐵� 	= 	𝑞 · 𝑣 ·
𝜇O
2 · 𝜋 ·

𝐼
𝑑 

 
Once again we calculate the force 𝑓′  in the proper system S' of that particle. This time we use the transformation rules of 
the electromagnetic field. 
 
In system S we have   𝐸)⃗ = 0  and, at the position of the particle,  𝐵)⃗ = 𝐵� =

ò³
M·ó
· ô
]
	 . From that we get with (27.1) 

 
𝐸R′	 = 	𝐸R 	= 	0	

	𝑎
𝑏 											 				𝐵R′	 = 	𝐵R = 0																									

									𝐸�′	 = 	 𝛾3 · (𝐸� − 𝑣 · 𝐵�) = 	0 																		𝐵�′ = 𝛾3 · <𝐵� +
𝑣
𝑐M · 𝐸�	> = 	𝛾3 · 𝐵�

																							𝐸�′	 = 	 𝛾3 · (𝐸� + 𝑣 · 𝐵�) = 𝛾3 · 𝑣 · 𝐵� 							𝐵�′ = 	 𝛾3 · <𝐵� −
𝑣
𝑐M · 𝐸�	> = 0

 

 
The force acting in S' on the particle is 
 

𝑓′ = 𝑞 · ¶𝐸)⃗ ′	 + 	𝑢)⃗ 	×	𝐵)⃗ ′· = 𝑞 · ¶𝐸)⃗ ′	 + 	0)⃗ 	×	𝐵)⃗ ′· = 𝑞 · 𝐸�′	 
 

For the Coulomb force 𝑓′ we find 
𝑓′	 = 𝑓�′	 = 	 𝛾3 · 𝑞 · 𝑣 · 𝐵� 	= 	 𝛾3 · 𝑓	                                                            (31.2) 

 
Virtually without any effort we could verify the result of the last section. 
 
 
So we have   𝑓′ = 𝛾3 · 𝑞 · 𝑣 ·

ò³
M·ó
· ô
]
	     and     𝑓 = 	𝑞 · 𝑣 · ò³

M·ó
· ô
]
   where  𝐼  stands for the electric current measured in 

system S . 
 
What about the current measured in system S' ? Electric current is the amout of electric charge passing a cross section of 
the conductor per time unit. The calculation is easy for directions perpendicular to the relative speed 𝑣 : 
 

𝐼�′ = 𝑑𝑄′/𝑑𝑡′ = 𝜌′ · 𝐴′ · 𝑢�′	 = 	 𝛾3 · 𝜌 ·
I
­¬
· 𝐴 · 𝛾3 · 𝑢� 	= 	𝛾3 · 𝜌 · 𝐴 · 𝑢� = 	𝛾3 · 𝐼�                    (31.3) 

 
𝑢� denotes the drift velocity of the electrons in y-direction. In general, the transformation of that drift velocity in x-
direction is a bit more complicated. However, in our special case, the drift velocity 𝑢R′ of the charge in S' is well known: 
𝑢R′ = −𝑣 . In this special case we find using (30.4) and (30.1)  
 

𝐼R′ = 𝜌′ · 𝐴′ · 𝑢R′	 = 𝜌′ · 𝐴′ · (−𝑣) 	= 𝛾3 · 𝑛 · 𝑒 · 𝛾3 · 𝛽3
M · 𝐴 · (−𝑣) 	= 𝛾3 · (−𝜌) · 𝐴 · (−𝑣) = 	𝛾3 · 𝐼R          (31.4) 

 
and we have 
 

				𝑓′ = 𝑞 · 𝑣 ·
𝜇O
2 · 𝜋 ·

𝐼′
𝑑′ 					and					𝑓 = 	𝑞 · 𝑣 ·

𝜇O
2 · 𝜋 ·

𝐼
𝑑 									with					𝑑′ = 𝑑		,			𝐼′ = 𝛾3 · 𝐼				and				𝐵�′ = 	 𝛾3 · 𝐵�	 

 
This result is restricted to our special case of  𝑢M = 	𝑣M.  

 (31.5)   

 (31.1) 



C32    The Cylindrical Conductor 3 
 
 
One more time we are back in the situation of C30. This time we will calculate the force acting on our particle in system 
S' using the four-currents 𝐽 and  𝐽′ . The point is to illustrate the concept of current density. 
 
The overal charge of the conducting wire is zero. There is no electric field outside the wire. Thus the charge density of 
the drifting electrons has to be the same as the charge density of the lattice atoms deprived of their electrons in the 
conduction band. Let us denote these charge densities with 𝜌  and  −𝜌 . Total four-current  𝐽 in system S is the sum of the 
four-current  𝐽D  of the electrons in the conduction band and the four-current  𝐽¡ of the lattice atoms : 
 

𝐽ehe 	= 	G

(𝜌ehe · 𝑐)
𝑗R
𝑗�
𝑗�

H =	 𝐽¡ +	𝐽D 	= 	𝜌 · G

(𝑐)
0
0
0

H	+	(−𝜌) · G
(𝑐)
𝑣
0
0

H	= 	G

0
−𝜌 · 𝑣
0
0

H	 

 
The drift velocity 𝑢 of the electrons is by assumption the same as the velocity 𝑣 of system S' as seen from S.  
The electric current associated with  𝐽ehe is 
 

𝐼	 = 	𝐼R 	=	 𝑗R · 𝐴R 	= −𝜌 · 𝑣	 · 𝑟M · 𝜋                                                        (32.1) 
We have 
 

				𝐽¡ 	= 	𝜌 · G

(𝑐)
0
0
0

H = 𝜌O¡ · 1 · G

(𝑐)
0
0
0

H = 𝜌O¡ · 𝛾 · G

(𝑐)
𝑢R
𝑢�
𝑢�

H = 𝜌O¡ · 𝑈¡										with							𝐽¡ ∘ 𝐽¡ = 	𝜌O¡M · 𝑐	M 

and 
 

𝐽D 	= 	−𝜌 · G
(𝑐)
𝑣
0
0

H =	𝜌OD · 𝛾3 · G
(𝑐)
𝑣
0
0

H = 𝜌OD · 𝛾3 · G

(𝑐)
𝑣R
𝑣�
𝑣�

H = −𝜌OD · 𝑈D									with							𝐽D ∘ 𝐽D = 	𝜌ODM · 𝑐	M 

 
𝜌O¡		and 𝜌OD  are the charge densities as measured in their proper system. 
 
 
Now we calculate the four-currents  𝐽′	,  𝐽¡′  and  𝐽D′  in system S'  by multiplying the four-currents in system S with the 
Lorentz matrix 𝐿 : 
 

𝐽¡′	 = 	𝐿 · 𝐽¡ 	= 	G

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

H · 	𝜌 · G

(𝑐)
0
0
0

H = 	𝜌 · 𝛾 · G
(𝑐)
−𝑣
0
0

H 

 

𝐽D′	 = 	𝐿 · 𝐽D 	= 	G

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

H ·	(−𝜌) · G
(𝑐)
𝑣
0
0

H =	−𝜌 · 𝛾 · G

𝑐 − 𝛽 · 𝑣
−𝛽 · 𝑐 + 𝑣

0
0

H = −𝜌 · 𝛾 · G
𝑐 − 𝛽 · 𝑣

0
0
0

H 

and hence 

𝐽′	 = 	 𝐽¡′ +	𝐽D′	 = 𝜌 · 𝛾 · G
(𝑐)
−𝑣
0
0

H− 𝜌 · 𝛾 · G
𝑐 − 𝛽 · 𝑣

0
0
0

H = 𝜌 · 𝛾 · G
𝛽 · 𝑣
−𝑣
0
0

H =

⎝

⎜
⎛
𝑐 · 𝜌′ehe
𝑗R′
𝑗�′
𝑗�′ ⎠

⎟
⎞

 

 
In S'  the current density of the electrons is zero, but the positively charged lattice atoms represent an electric current in 
the negative x'-direction. The strength of that current is 
 

𝐼′	 = 	𝐼R′	 = 	 𝑗R′ · 𝐴R′	 = 		𝜌 · 𝛾 · (−𝑣) · 𝑟M · 𝜋	 = 	𝛾 · 𝐼                                              (32.2) 



 
Following the law of Ampère, the current 𝐼′ induces in distance 𝑑′ = 𝑑 a magnetic field of strenth  
 

𝐵�′ =
𝜇O
2 · 𝜋 ·

𝐼′
𝑑′ 	=

𝜇O
2 · 𝜋 ·

	𝛾 · 𝐼
𝑑 	= 𝛾 ·

𝜇O
2 · 𝜋 ·

	𝐼
𝑑 = 𝛾 · 𝐵� 

 
but that magnetic field does not act on our charged particle at rest in system S' ! 
 
In system S', total charge density of the wire is 
 

𝜌ehe� 	= 	𝜌 · 𝛾 · 𝛽 · 𝑣 · I
C
	= 	𝜌 · 𝛾 · 𝛽M                                                                  (32.4)   

 
As demonstrated in C30 this charge density exerts a Coulomb force on our charged particle of amount 
 

𝐸′ · 2 · 𝜋 · 𝑑′ · ∆𝑙′	 = 	
1
𝜀O
· 𝜌ehe� · 𝑟M · 𝜋 · ∆𝑙′	 

Rearranging the terms we find 
 

𝐸� =
1

2 · 𝜋 · 𝜀O
·
1
𝑑′ · 𝜌ehe

� · 𝑟M · 𝜋	 = 	
1

2 · 𝜋 · 𝜀O
·
1
𝑑′ 	 · 	𝜌 · 𝛾 · 𝛽

M · 𝑟M · 𝜋	 = 	−
1

2 · 𝜋 · 𝜀O
·
1
𝑑′ 	 · 𝛽

M ·
1
𝑣 	 · 	𝐼′ = 

 

															= 	−	
1

2 · 𝜋 · 𝜀O
·
1
𝑑′ 	 ·

𝑣M

𝑐M ·
1
𝑣 	 · 	𝐼′ = −	

𝜇O · 𝜀O
2 · 𝜋 · 𝜀O

·
1
𝑑′ 	 · 𝑣 · 	𝐼′	 = −

𝜇O
2 · 𝜋 ·

𝐼′
𝑑′ · 𝑣	 = 	𝐵�′ · 𝑣	 = 	𝛾 · 𝐵� · 𝑣	 

 
For the Coulomb force in system S' we find as before in (31.2) 
 

𝑓′	 = 𝑓�′	 = 𝑞 · 𝐸� = 	𝑞 · 𝛾3 · 𝑞 · 𝑣 · 𝐵� 	= 	 𝛾3 · 𝑓	                                                (32.6)   
 
 
 
The four-current  𝐽 = (	0	, −𝜌 · 𝑣	, 0	, 0)f  is given from the beginning. Hence 	𝐽′ = 𝐿 · 𝐽	is straightway calculated and we 
find the current density and the charge density in system S' on a short path by 
 

𝐽′	 = 	𝐿 · 𝐽	 = 	G

𝛾 −𝛾 · 𝛽 0 0
−𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

H · 	G

0
−𝜌 · 𝑣
0
0

H = G
𝜌 · 𝑣 · 𝛾 · 𝛽
−𝜌 · 𝛾 · 𝑣

0
0

H =

⎝

⎜
⎛
𝑐 · 𝜌′ehe
𝑗R′
𝑗�′
𝑗�′ ⎠

⎟
⎞
= G

𝑐 · (𝜌 · 𝛾 · 𝛽M)
−𝜌 · 𝛾 · 𝑣

0
0

H 

 
As shown above we get from that the field vectors 𝐵′ and 𝐸′ of the conductor in system S' . All results are in complete 
agreement with those calculated in sections C28 and C29 . 
 
We made some effort to show that four-currents in general cannot be written in the form 𝐽 = 𝜌O · 𝑈. But only in that form 
we have evidence that four-currents are four-vectors. In our example we showed that total four-current 𝐽	at least can be 
written as the sum of such four-currents. And the sum of four-vectors is a four-vector again as pointed out in A2 . 
  

  (32.3)   

  (32.5)   



C33    The Closed Loop in a Magnetic Field 
 
 
In the laboratory frame S a metal rod is moving in x-direction at constant speed 𝑣 . The rod is in conductive contact with 
a metal rail as shown in the figure below. Everywhere in the enclosed area we have a magnetic field pointing in the 
z-direction : 
 

 
 
In the laboratory frame S a Lorentz force is acting on the electrons in the moving rod 

 
           𝑓 	= 𝑓� 	= 	−𝑒 · (−𝑣 · 𝐵�) 	= 	𝑒 · 𝑣 · 𝐵�                                                       (33.1) 

 
inducing an electric current 𝐼 in the closed circuit. With Faraday's law we can calculate the induced voltage 𝑈 :  
 

𝑈|�] 	= 	 ý
𝑑Φ
𝑑𝑡
ý 	= 	𝐵 ·

𝑑A
𝑑𝑡 	= 	𝐵 · 𝑙 · 𝑣 

 
The induced current depends on the resistance 𝑅 of the circuit : 
 

𝐼	 = 	𝑈|�]	/	𝑅	 = 		𝐵 · 𝑙 · 𝑣	/	𝑅 
 
 
In the frame S' of the rod the average speed of the electrons is zero, and hence no Lorentz force can be at work. But in the 
transformed field a non-zero electric field component 𝐸�′	shows up : 
 

𝐸R′	 = 	𝐸R 	= 	0				,			𝐸�′	 = 𝛾3 · ¶𝐸� − 𝑣 · 𝐵�· 	= 	−𝛾3 · 𝑣 · 𝐵�					,			𝐸�′	 = 𝛾3 · ¶𝐸� + 𝑣 · 𝐵�· 	= 	0		 
 
The electrons in the rod are subjected to a Coulomb force of amount 
 

𝑓′	 = 	𝑓�′	 = 	 (−𝑒) · (−𝛾3) · 𝑣 · 𝐵� 	= 	 𝛾3 · 𝑒 · 𝑣 · 𝐵� =	𝛾3 · 𝑓	                                        (33.2) 
 

As in the previous sections we have  𝑓′ = 𝛾3 · 𝑓	. Following C29 the induced current is greater by the same factor  𝛾3  in 
S' , too : 

	𝐼′	 = 𝛾3 · 𝐼                                                                                       (33.3) 
 
And what about the induced voltage in system S' ? 
 

|𝑈|�]′	| = 	
𝑑Φ′
𝑑𝑡′ 	= 	𝐵�′ ·

𝑑A′
𝑑𝜏 	= 𝛾3 · 𝐵� ·

𝑑A/𝛾3
𝑑𝑡 ·

𝑑𝑡
𝑑𝜏 	= 	 𝛾3 · 𝐵 ·

𝑑A/𝛾3
𝑑𝑡 · 𝛾3 = 𝛾3 · 𝐵 ·

𝑑A
𝑑𝑡 	= 	 𝛾3 ·

|𝑈|�]| 
 
Therefore, for Ohm's resistance we have  𝑅� = 𝑅 : 
 

𝑅′	 = 	
|𝑈|�]′	|
𝐼′ 	= 	

𝛾3 · |𝑈|�]	|
𝛾3 · 𝐼

	= 	
|𝑈|�]	|
𝐼 	= 	𝑅 

  



C34    The First Invariant of the Electromagnetic Field 
 
 
Let a frame S' move at constant speed 𝑣 as seen from another frame S . Let some electromagnetic field be given by  
𝐸)⃗   and 𝐵)⃗   in S and by  𝐸)⃗ ′ and 𝐵)⃗ ′ in S' . Then the following equation holds true 
 

𝐸)⃗ · 𝐵)⃗ 	= 	𝐸)⃗ ′ · 𝐵)⃗ ′                                                                                  (34.1) 
 

The inner product  𝐸)⃗ · 𝐵)⃗ = 𝐸)⃗ (𝑡, 𝑥, 𝑦, 𝑧) · 𝐵)⃗ (𝑡, 𝑥, 𝑦, 𝑧)  is relativistically invariant. Therefore, if  𝐸)⃗   and  𝐵)⃗   are 
perpendicular to each other in system S they are perpendicular to each other in any other inertial system S' . 
 
 
We could prove (34.1) using the equations (27.1) as done in  [2 - 34.20]. We prefere another way, introducing a matrix 𝑀 
which will turn out to be very useful in sections C38 and C39 : 
 

𝑀	 =	

⎝

⎜
⎛

0 𝑐 · 𝐵R 𝑐 · 𝐵� 𝑐 · 𝐵�
𝑐 · 𝐵R 0 −𝐸� 𝐸�
𝑐 · 𝐵� 𝐸� 0 −𝐸R
𝑐 · 𝐵� −𝐸� 𝐸R 0 ⎠

⎟
⎞

 

 
𝑀  gives a 'dual' description of the electromagnetic field and is closely connected with our matrix  𝐹 . A simple matrix 
multiplication shows that  
 

𝑀 · 𝐹	 = 	𝐹 · 𝑀	 = 	𝑐 · 𝐸)⃗ · 𝐵)⃗ · 	G
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

	H = 		𝑐 · 𝐸)⃗ · 𝐵)⃗ · 𝐼𝑑y 

 
The trace , that is the sum of the main diagonal elements of  𝑀 · 𝐹, is   4 · 𝑐 · 𝐸)⃗ · 𝐵)⃗  .  
 
If  𝐹  is the description of the electromagnetic field in System S then, following (24.4),  𝐹′ = 𝐿 · 𝐹 · 𝐿DI  is the 
description of the same electromagnetic field in system S' . You can easily check that  𝑀′ = 𝐿 · 𝑀 · 𝐿DI holds for the 
matrix  𝑀 . So we have 
  

𝐹′ = 𝐿 · 𝐹 · 𝐿DI									and									𝑀′ = 𝐿 · 𝑀 · 𝐿DI                                                    (34.4)v 
 

and hence 
 

4 · 𝑐 · 𝐸)⃗ · 𝐵)⃗ 	= 	trace(𝑀 · 𝐹) 	= 	trace(	𝐿 · 𝑀 · 𝐿DI · 𝐿 · 𝐹 · 𝐿DI) 	= 	trace(𝑀′ · 𝐹′) 	= 	4 · 𝑐 · 𝐸)⃗ ′ · 𝐵)⃗ ′ 
 

This is our proof of (34.1) . 
 
By the way, for the determinants of the matrices  𝐹, 𝐹′, 𝑀 and 𝑀′ we have 
 

𝑑𝑒𝑡(𝐹) 	= 𝑑𝑒𝑡(𝐹′) = 𝑑𝑒𝑡(𝑀) = 𝑑𝑒𝑡(𝑀′) = 	−𝑐M · ¶𝐸)⃗ · 𝐵)⃗ ·
M
                                        (34.5)d 

 
 
If a non-zero electromagnetic field can be transformed into a pure 𝐵)⃗ ′-field we have  𝐸)⃗ ′ = 0 and hence  𝐸)⃗ ′ · 𝐵)⃗ ′ = 0 
everywhere. According to (34.1) that means that 𝐸)⃗ · 𝐵)⃗  has to be zero, too. Of course we have the same situation if 
some electromagnetic field can be transformed in a pure 𝐸)⃗ ′-field. 
 
 
 
 
  

 (34.2)   

 (34.3)   



C35    The Second Invariant of the Electromagnetic Field 
 
 
If some coordinate frame S' moves at constant speed 𝑣  along the x-direction of another frame S then the following 
equation concerning the descriptions of the electromagnetic field in S respective S' holds : 
 

𝐸M − 𝑐M · 𝐵M 	= 	𝐸′M − 𝑐M · 𝐵′M                                                                         (35.1) 
 

𝐸M = 𝐸)⃗ · 𝐸)⃗    and  𝐵M = 𝐵)⃗ · 𝐵)⃗   denote the inner products of the 3d-field vectors. 
 
For a proof of (35.1) we consider the determinants of the matrices  𝐹 +𝑀  and  𝐹 −𝑀 . The calculation shows that 
 

𝑑𝑒𝑡(𝐹 +𝑀) 	= 𝑑𝑒𝑡(𝐹 − 𝑀) = 	−(𝐸M − 𝑐M · 𝐵M)M                                                       (35.2) 
 
In any case we have for 4x4-matrices    𝑑𝑒𝑡(𝐹 −𝑀) = 𝑑𝑒𝑡(𝑀 − 𝐹) . Hence we have 
 

𝑑𝑒𝑡(𝐹 +𝑀) 	= 𝑑𝑒𝑡(𝐹 − 𝑀) = 𝑑𝑒𝑡(𝑀 − 𝐹) = 𝑑𝑒𝑡(−𝑀 − 𝐹) = 	−(𝐸M − 𝑐M · 𝐵M)M                        (35.3) 
 
The corresponding statement in S' is 
 

𝑑𝑒𝑡(𝐹′ +𝑀′) 	= 𝑑𝑒𝑡(𝐹′ − 𝑀′) = 𝑑𝑒𝑡(𝑀′ − 𝐹′) = 𝑑𝑒𝑡(−𝑀′ − 𝐹′) = 	−(𝐸′M − 𝑐M · 𝐵′M)M                    (35.4) 
 

Further we know 
det(𝐹 +𝑀) = det(𝐿 · (𝐹 + 𝑀	) · 𝐿DI) = det¶(𝐿 · 𝐹 + 𝐿 · 𝑀	) · 𝐿DI	· =	 

=	det¶(𝐿 · 𝐹 · 𝐿DI + 𝐿 · 𝑀 · 𝐿DI	)	· = 𝑑𝑒𝑡(𝐹′ +𝑀′) 
 
We are not quite done with the proof of (35.1), but we know now that   (𝐸M − 𝑐M · 𝐵M)M 	= 	 ¶𝐸�M − 𝑐M · 𝐵�M·

M
 .  

(25.1) shows that 𝐸M and  𝐵M are continuous functions of relative speed 𝑣 . If the value of  𝐸M − 𝑐M · 𝐵M  is positive (e.g.) 
and if its absolute value is constant, then it stays positive with varying 𝑣 , it cannot jump to  −(𝐸M − 𝑐M · 𝐵M).	
Therefore, not only the square of  𝐸M − 𝑐M · 𝐵M is invariant, but 𝐸M − 𝑐M · 𝐵M itself. With that (35.1) is proven. 
 
Of course you can prove (35.1) by means of (27.1), showing directly that  𝐸′M − 𝑐M · 𝐵′M equals  𝐸M − 𝑐M · 𝐵M . This 
calculation is done in [2 - 34.21] . 
 
 
(35.1) shows the impossibility of turning a pure electric field 𝐸)⃗  into a pure magnetic field 𝐵)⃗ ′ : Then we would have 
𝐸M 	= −𝑐M · 𝐵′M	which implies 𝐸M = 0 = 𝐵′M. Further we learn from (35.1) that some electromagnetic field can only be 
transformed in a pure magnetic field if  𝐸M − 𝑐M · 𝐵M 	≤ 	0 . And, similarly, an electromagnetic field can only be 
transformed in a pure electric field if  𝐸M − 𝑐M · 𝐵M 	≥ 	0 . In both cases we have the additional condition of  𝐸)⃗ · 𝐵)⃗ = 0  
according to the prevous section. 
 
The necessary and sufficient conditions for such a transformation are studied in the next section. 
 
 
  



C36    Which Fields can be Transformed to Zero ? 
 
 
The answer comes from the equations (27.1). They contain the necessary and sufficient conditions for the existence of a 
transformation leading to  𝐸)⃗ ′ = 0  or  𝐵)⃗ ′ = 0 .  
 
If we evaluate (27.1) with  𝐸)⃗ ′ = 0 we find 
 

𝐸R = 0				,					𝐸� − 𝑣 · 𝐵� 	= 	0							and						𝐸� + 𝑣 · 𝐵� 	= 	0 
and hence 

𝐸R = 0				,					𝐸� = 𝑣 · 𝐵�								and						𝐸� = 	−𝑣 · 𝐵�                                              (36.1) 
 
This is the necessary and sufficient condition for the possibility to eliminate the electric field by applying a Lorentz 
boost. The necessary condition of  C34, namely 𝐸)⃗ · 𝐵)⃗ = 0 , is already fulfilled : 
 

𝐸)⃗ · 𝐵)⃗ = 𝐸R · 𝐵R + 𝐸� · 𝐵� + 𝐸� · 𝐵� = 	0 · 𝐵R + 𝑣 · 𝐵� · 𝐵� + ¶−𝑣 · 𝐵�· · 𝐵� 	= 𝑣 · 𝐵� · 𝐵� − 𝑣 · 𝐵� · 𝐵� = 0 
 
The necessary condition found in C35 is fulfilled, too : 
 

𝐸M − 𝑐M · 𝐵M = 0 + 𝑣M · 𝐵�M + 𝑣M · 𝐵�M −	𝑐M · (𝐵RM + 𝐵�M + 𝐵�M) = −𝑐M · 𝐵RM + (𝑣M − 𝑐M) · (𝐵�M + 𝐵�M) 	≤ 	0 
 
 
In the same way we find the conditions for the possibility to eliminate the magnetic field. From  𝐵)⃗ ′ = 0 and (27.2) 
we get 
 

𝐵R = 0				,					𝐵� +
𝑣
𝑐M · 𝐸� 	= 	0							and						𝐵� −

𝑣
𝑐M · 𝐸� 	= 	0 

and hence 
𝐵R = 0				,					𝐵� = − 3

CB
· 𝐸�								and						𝐵� = 	

3
CB
· 𝐸�                                              (36.2) 

 
With that, the necessary conditions of C34 and  C35 , namely  𝐸)⃗ · 𝐵)⃗ = 0  and   𝐸M − 𝑐M · 𝐵M ≥ 	0 , are fulfilled, too. 
 
 
 
 
 
 
  



C37    The Nabla-Operator as a Four-Form 
 
 
Maxwell's equations can be written in a nice and compact form by means of the following 4d-Nabla-operator : 
 

𝑁| 	= Æ	
1
𝑐 ·

𝜕
𝜕𝑡 	 ,

𝜕
𝜕𝑥	 ,

𝜕
𝜕𝑦	 ,

𝜕
𝜕𝑧		

Ç 

 
The goal of this section is to give proof of  
 

																					𝑁|′	 = Æ	
1
𝑐 ·

𝜕
𝜕𝑡′	 ,

𝜕
𝜕𝑥′ 	,

𝜕
𝜕𝑦′	,

𝜕
𝜕𝑧′	

Ç = 𝑁| · 𝐿DI 

 
In other words: 𝑁| transforms like a four-form, obeying (9.6) .  
 
 
We write out the right side of (37.2) : 
 

𝑁| · 𝐿DI = Æ	
1
𝑐 ·

𝜕
𝜕𝑡 	 ,

𝜕
𝜕𝑥	,

𝜕
𝜕𝑦	 ,

𝜕
𝜕𝑧		

Ç · G

𝛾 𝛾 · 𝛽 0 0
𝛾 · 𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

H = Æ
1
𝑐 · 𝛾 ·

𝜕
𝜕𝑡 + 𝛾 · 𝛽 ·

𝜕
𝜕𝑥 	,

1
𝑐 · 𝛾 · 𝛽 ·

𝜕
𝜕𝑡 + 𝛾 ·

𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦	 ,

𝜕
𝜕𝑧
Ç 

 
We have to show that the product equals 𝑁|′. 
 

• we have   #
#�
	=	 #

#��
	  because we always have  𝑑𝑦 = 𝑑𝑦′  in our setting 

 
• similarly we have   #

#�
	= 	 #

#��
   

 
• Let  𝑓  be an arbitrary function depending on the variable 𝑡′ . The equations (1.1) show how 𝑡′  itself depends 

on the variables 𝑡 and 𝑥 . Hence we have 
 

𝜕𝑓
𝜕𝑡′ 	=

𝜕𝑓
𝜕𝑡 ·

𝜕𝑡
𝜕𝑡′ +

𝜕𝑓
𝜕𝑥 ·

𝜕𝑥
𝜕𝑡′ 	= 	

𝜕𝑓
𝜕𝑡 · 𝛾 +

𝜕𝑓
𝜕𝑥 · 𝛾 · 𝛽 · 𝑐 

 Obviously we have    
1
𝑐 ·

𝜕
𝜕𝑡′ 	= 	

1
𝑐 · 𝛾 ·

𝜕
𝜕𝑡 	+ 	𝛾 · 𝛽 ·

𝜕
𝜕𝑥 

 
 what proves the statement (37.2) for the first component of 𝑁|′ . 
 

• Similarly we show that (37.2) holds for the second component of 𝑁|′ : 
 

𝜕𝑓
𝜕𝑥′ 	=

𝜕𝑓
𝜕𝑡 ·

𝜕𝑡
𝜕𝑥′ +

𝜕𝑓
𝜕𝑥 ·

𝜕𝑥
𝜕𝑥′ 	= 	

𝜕𝑓
𝜕𝑡 · 𝛾 · 𝛽 ·

1
𝑐 +

𝜕𝑓
𝜕𝑥 · 𝛾 

 and hence 
𝜕
𝜕𝑥′ 	= 	

1
𝑐 · 𝛾 · 𝛽 ·

𝜕
𝜕𝑡 + 𝛾 ·

𝜕
𝜕𝑥 

 
 This is exactly what we got from our matrix multiplication  𝑁| · 𝐿DI. 
 
 
Our 4d-Nabla-operator transforms like a four-form. 
 
  

 (37.1)   

 (37.2)   



C38    Maxwell's Equations for Empty Space 
 
 
Maxwell's equation are frequently written with the 3d-Nabla-operator  ∇	= < #

#R
	, #
#�
	 , #
#�
	>
f
. He is understood as a vector 

used to build inner products or cross products with the electric or magnetic field vectors. 
 

• ∇ · 𝐸)⃗ = I
ú³
· 𝜌       is short for        	#n

)⃗

#R
	+		#n

)⃗

#�
	+	#n

)⃗

#�
	= 	 I

ú³
· 𝜌	 = 	𝜇O · 𝑐M · 𝜌  

Sources of the electric field are electric charges. 
 

• ∇	x	𝐵)⃗ = 𝜇O · <𝚥 + 𝜀O ·
#n)⃗

#e
>         is the short form for 

Æ#ì)⃗ &
#�
− #ì)⃗ Ú

#�
	 , #ì

)⃗ °
#�
− #ì)⃗ &

#R
	 , #ì

)⃗ Ú
#R

− #ì)⃗ °
#�
Ç
f
= 𝜇O · Æ𝑗R + 𝜀O ·

#n)⃗°
#e
	 , 𝑗� + 𝜀O ·

#n)⃗Ú
#e
	 , 𝑗� + 𝜀O ·

#n)⃗&
#e
Ç
f

  

Curls in the magnetic field arise around electric currents and in varying electric fields. 𝚥  stands for the 
3d-current density vector. 
 

Those 1+3 equations can be expressed with our 4d-Nabla-operator and the matrix 𝐹 in a single matrix equation : 
 

									Æ	
1
𝑐 ·

𝜕
𝜕𝑡 	 ,

𝜕
𝜕𝑥	 ,

𝜕
𝜕𝑦	 ,

𝜕
𝜕𝑧		

Ç ·

⎝

⎜
⎛
0 𝐸R 𝐸� 𝐸�
𝐸R 0 𝑐 · 𝐵� −𝑐 · 𝐵�
𝐸� −𝑐 · 𝐵� 0 𝑐 · 𝐵R
𝐸� 𝑐 · 𝐵� −𝑐 · 𝐵R 0 ⎠

⎟
⎞
= 𝑐 · 𝜇O · (𝑐 · 𝜌, −𝑗R,−𝑗�,−𝑗�) 

 
Using our abbreviations we find a very compact form of  (38.1) : 
 

𝑁| · 𝐹	 = 	𝑐 · 𝜇O · 𝐽| 
 
where  𝐽| = 	(𝑐 · 𝜌,−𝑗R,−𝑗�,−𝑗�)  represents the four-form corresponding to the four-current  𝐽|. Further we used the 
identity  𝜀O · 𝜇O = 	1/𝑐M . 
 
 

 
Now to the second half of Maxwell's equations. 
 

• ∇ · 𝐵)⃗ = 0        means        #ì
)⃗

#R
	+		#ì

)⃗

#�
	+	#ì

)⃗

#�
	= 0 .  

There is no such thing as a magnetic monopole.  
 

• ∇	x	𝐸)⃗ 	= − #ì)⃗

#e
        means      Æ#n

)⃗&
#�
− #n)⃗Ú

#�
	, #n

)⃗°
#�
− #n)⃗&

#R
	 , #n

)⃗Ú
#R
− #n)⃗°

#�
Ç
f
=	 Æ− #ì)⃗ °

#e
	 , − #ì)⃗ Ú

#e
	 , − #ì)⃗ Ú

#e
	Ç
f

 

Curls in the electric field are caused by varying magnetic fields. 
 

Those 1+3 equations can be expressed with our 4d-Nabla-operator and the matrix 𝑀 in a single matrix equation : 
 

Æ	
1
𝑐 ·

𝜕
𝜕𝑡 	,

𝜕
𝜕𝑥	 ,

𝜕
𝜕𝑦	,

𝜕
𝜕𝑧		

Ç ·

⎝

⎜
⎛

0 𝑐 · 𝐵R 𝑐 · 𝐵� 𝑐 · 𝐵�
𝑐 · 𝐵R 0 −𝐸� 𝐸�
𝑐 · 𝐵� 𝐸� 0 −𝐸R
𝑐 · 𝐵� −𝐸� 𝐸R 0 ⎠

⎟
⎞
=	 (0, 0, 0, 0) 

 
or, using our abbreviations 
 

𝑁| · 𝑀	 = 	 (0, 0, 0, 0) 
 
  

(38.1) 

(38.2) 

(38.3) 

(38.4) 



C39   Maxwell's Equations are Covariant 
 
 
In the last section we wrote down Maxwell's 2·(3+1) equations in a very compact way : 
 

𝑁| · 𝐹	 = 	𝑐 · 𝜇O · 𝐽|	 
and 

𝑁| · 𝑀	 = 	0| 
 
 
with the four-forms   𝐽| 	= (𝑐 · 𝜌,−𝑗R,−𝑗�,−𝑗�)   and   0| = (0, 0, 0, 0)   and the matrices  𝐹  and  𝑀 . 
 
We also know how to transform those matrices and four-forms if we switch from one reference frame S to another frame 
S' . With all that given it is easy to show that Maxwell's equations hold true in the same way in S' as they do in S : 
 
 
 
 
 
 
 
 
 
 
The proof for the other four equations is done in the same manner : 
 
 
 
 
 
 
 
 
 
Here we reap the fruits of our preparatory work ! 
 
 
Maxwell's equations are covariant, they have the same form in any inertial frame of reference. Maxwell's theory of the 
electromagnetic field, the invariance of the electric charge, the Lorentz force law and STR fit in a perfect way. 
 
  

 𝑁| · 𝑀	 = 	0| 
⟺ 𝑁| · 𝐿DI · 𝐿 · 𝑀	 = 	0|  
⟺ (𝑁| · 𝐿DI) · (𝐿 · 𝑀 · 𝐿DI) 	= 	0| · 𝐿DI 
⟺ 𝑁|′ · 𝑀′	 = 	0| 

 𝑁| · 𝐹	 = 	𝑐 · 𝜇O · 𝐽|	 
⟺ 𝑁| · 𝐿DI · 𝐿 · 𝐹	 = 		𝑐 · 𝜇O · 𝐽|	 
⟺ (𝑁| · 𝐿DI) · (𝐿 · 𝐹 · 𝐿DI) 	= 	𝑐 · 𝜇O · (𝐽| · 𝐿DI) 
⟺ 𝑁|′ · 𝐹′	 = 		𝑐 · 𝜇O · 𝐽|′ 



C40    Some Cosmetics for the Electromagnetic Field 
 
 
In the matrices 𝐹 and 𝑀 the electric and the magnetic field appear in a slightly asymmetric way. This could be fixed with 
a small change in the definition of the electric field. A bunch of other aesthetic advantages would come with that small 
change : 
 

• Let us use the following new definition of the electric field :    Ε ∶= 𝐸/𝑐 
We do not change the definition of the magnetic field :   Β ∶= 𝐵 
Now, both fields are measured in the unit 'Tesla' 
 

• Let us use the matrices  Ϝ ∶= 𝐹/𝑐   and  Μ ∶= 𝑀/𝑐  to desribe the electromagnetic field. The factor 𝑐 
disappears, and the duality of the matrices becomes evident : 

         													Ϝ	 = 	

⎝

⎜
⎛
0 ΕR Ε� Ε�
ΕR 0 Β� −Β�
Ε� −Β� 0 ΒR
Ε� Β� −ΒR 0 ⎠

⎟
⎞

           and          Μ	 = 	

⎝

⎜
⎛
0 ΒR Β� Β�
ΒR 0 −E� Ε�
Β� E� 0 −ΕR
Β� −Ε� ΕR 0 ⎠

⎟
⎞

   

 
• The factor 𝑐  disappears in the force law:    Κ = q · Ϝ · U      instead of     𝐾	 = 	 ë

C
· 𝐹 · 𝑈 

 
• The factor 𝑐  disappears in the second half of Maxwells's eight equations : 

N2 · F	 = 	µO · J2        instead of       𝑁| · 𝐹	 = 	𝑐 · 𝜇O · 𝐽| 
 

• The factor 𝑐M disappears in the determinants of  F and  M :  
  𝑑𝑒𝑡(M) = 𝑑𝑒𝑡(F) = −(E))⃗ · B))⃗ )M          instead of      𝑑𝑒𝑡(𝑀) = 𝑑𝑒𝑡(𝐹) = −𝑐M · (𝐸)⃗ · 𝐵)⃗ )M   
 

• The factor 𝑐M disappears in the product of  F and  M : 
F · M	 = 	 (E))⃗ · B))⃗ ) · 𝐼𝑑y	           instead of        𝐹 · 𝑀	 = 	 𝑐M · (𝐸)⃗ · 𝐵)⃗ ) · 𝐼𝑑y	   
 

• The factor 𝑐M disappears in the second invariant of the electromagnetic field : 
E))⃗ M − B))⃗ M         instead of       𝐸)⃗ M − 𝑐M · 𝐵)⃗ M 
 

• The set (25.1) of transformations of the electromagnetic field becomes symmetric in  E))⃗   and  B))⃗    :  
 

E7′	 = 	E7	 			B7′	 = 	B7
																											E8′	 = 	 𝛾3 · (E8 − 𝛽 · B9)	 																													B8� = 𝛾3 · ¶B8 + 𝛽 · E9	·
																										E9′	 = 	 𝛾3 · (E9 + 𝛽 · B8) 																														B9� = 	γ; · ¶B9 − 𝛽 · E8	·

	

 
• For the three-force 𝑓		we now have   𝑓 = 𝑞 · ¶𝑐 · E))⃗ 	+ 	𝑢)⃗ 	×	B))⃗ · . Both field vectors get multiplied by a velocity. 

 
 
All those simplifications would follow directly from giving the speed of light the value 1 , e.g. by measuring time in 
seconds and lengths in light-seconds. The speed of light would then be 'one lightsecond per second', that is 1 or 
'1 light'. 
 
Centuries ago Carl Friederich Gauss has suggested an even more radical approach: Let the units of the electric and the 
magnetic field be defined so that the field constants  𝜀O  and  𝜇O  have the value 1 . Then the speed of light would be 1 , 
too, and the field constants would disappear together with the speed of light from Maxwell's equations. 
 
Our new definition  Ε ∶= 𝐸/𝑐  is just the most gentle intervention to achieve the desired goal of symmetry between the 
electric and the magnetic field vectors. 


